Art of Problem Solving

AoPS Community

2021 International Zhautykov Olympiad

International Zhautykov Olympiad 2021

www.artofproblemsolving.com/community/c1705624
by Inshaallahgoldmedal, Adilet160205, CID-42, IndoMathXdZ

1 Prove that there exists a positive integer n, such that the remainder of 3^{n} when divided by 2^{n} is greater than 10^{2021}.

2 In a convex cyclic hexagon $A B C D E F, B C=E F$ and $C D=A F$. Diagonals $A C$ and $B F$ intersect at point Q, and diagonals $E C$ and $D F$ intersect at point P. Points R and S are marked on the segments $D F$ and $B F$ respectively so that $F R=P D$ and $B Q=F S$. The segments $R Q$ and $P S$ intersect at point T. Prove that the line $T C$ bisects the diagonal $D B$.

3 Let $n \geq 2$ be an integer. Elwyn is given an $n \times n$ table filled with real numbers (each cell of the table contains exactly one number). We define a rook set as a set of n cells of the table situated in n distinct rows as well as in n distinct columns. Assume that, for every rook set, the sum of n numbers in the cells forming the set is nonnegative.

By a move, Elwyn chooses a row, a column, and a real number a, and then he adds a to each number in the chosen row, and subtracts a from each number in the chosen column (thus, the number at the intersection of the chosen row and column does not change). Prove that Elwyn can perform a sequence of moves so that all numbers in the table become nonnegative.

4 Let there be an incircle of triangle $A B C$, and 3 circles each inscribed between incircle and angles of $A B C$.
Let r, r_{1}, r_{2}, r_{3} be radii of these circles $\left(r_{1}, r_{2}, r_{3}<r\right)$. Prove that

$$
r_{1}+r_{2}+r_{3} \geq r
$$

5 On a party with 99 guests, hosts Ann and Bob play a game (the hosts are not regarded as guests). There are 99 chairs arranged in a circle; initially, all guests hang around those chairs. The hosts take turns alternately. By a turn, a host orders any standing guest to sit on an unoccupied chair c. If some chair adjacent to c is already occupied, the same host orders one guest on such chair to stand up (if both chairs adjacent to c are occupied, the host chooses exactly one of them). All orders are carried out immediately. Ann makes the first move; her goal is to fulfill, after some move of hers, that at least k chairs are occupied. Determine the largest k for which Ann can reach the goal, regardless of Bob's play.

6 Let $P(x)$ be a nonconstant polynomial of degree n with rational coefficients which can not be presented as a product of two nonconstant polynomials with rational coefficients. Prove that
the number of polynomials $Q(x)$ of degree less than n with rational coefficients such that $P(x)$ divides $P(Q(x))$
a) is finite
b) does not exceed n.

