Art of Problem Solving

AoPS Community

China Girls Math Olympiad 2015
www.artofproblemsolving.com/community/c177727
by buzzychaoz, sqing

Day 1

1 Let $\triangle A B C$ be an acute-angled triangle with $A B>A C, O$ be its circumcenter and D the midpoint of side $B C$. The circle with diameter $A D$ meets sides $A B, A C$ again at points E, F respectively. The line passing through D parallel to $A O$ meets $E F$ at M. Show that $E M=M F$.

2 Let $a \in(0,1), f(x)=a x^{3}+(1-4 a) x^{2}+(5 a-1) x-5 a+3, g(x)=(1-a) x^{3}-x^{2}+(2-a) x-3 a-1$. Prove that:For any real number x, at least one of $|f(x)|$ and $|g(x)|$ not less than $a+1$.

3 In a 12×12 grid, colour each unit square with either black or white, such that there is at least one black unit square in any 3×4 and 4×3 rectangle bounded by the grid lines. Determine, with proof, the minimum number of black unit squares.

4 Let $g(n)$ be the greatest common divisor of n and 2015. Find the number of triples (a, b, c) which satisfies the following two conditions: 1) $a, b, c \in 1,2, \ldots, 2015 ; 2) g(a), g(b), g(c), g(a+b), g(b+$ c), $g(c+a), g(a+b+c)$ are pairwise distinct.

Day 2

5 Determine the number of distinct right-angled triangles such that its three sides are of integral lengths, and its area is 999 times of its perimeter.
(Congruent triangles are considered identical.)
$6 \quad$ Let Γ_{1} and Γ_{2} be two non-overlapping circles. A, C are on Γ_{1} and B, D are on Γ_{2} such that $A B$ is an external common tangent to the two circles, and $C D$ is an internal common tangent to the two circles. $A C$ and $B D$ meet at $E . F$ is a point on Γ_{1}, the tangent line to Γ_{1} at F meets the perpendicular bisector of $E F$ at $M . M G$ is a line tangent to Γ_{2} at G. Prove that $M F=M G$.

7 Let $x_{1}, x_{2}, \cdots, x_{n} \in(0,1), n \geq 2$. Prove that

$$
\frac{\sqrt{1-x_{1}}}{x_{1}}+\frac{\sqrt{1-x_{2}}}{x_{2}}+\cdots+\frac{\sqrt{1-x_{n}}}{x_{n}}<\frac{\sqrt{n-1}}{x_{1} x_{2} \cdots x_{n}} .
$$

8 Let $n \geq 2$ be a given integer. Initially, we write n sets on the blackboard and do a sequence of moves as follows: choose two sets A and B on the blackboard such that none of them is a
subset of the other, and replace A and B by $A \cap B$ and $A \cup B$. This is called a move. Find the maximum number of moves in a sequence for all possible initial sets.

