

AoPS Community

2015 China Western Mathematical Olympiad

Western Mathematical Olympiad 2015

www.artofproblemsolving.com/community/c177736 by buzzychaoz, sqing, YlOwOlY

Day 1

1	Let the integer $n \ge 2$, and x_1, x_2, \cdots, x_n be real numbers such that $\sum_{k=1}^n x_k$ be integer. $d_k = \min_{m \in \mathbb{Z}} x_k - m $, $1 \le k \le n$. Find the maximum value of $\sum_{k=1}^n d_k$.
2	Two circles (Ω_1) , (Ω_2) touch internally on the point T . Let M, N be two points on the circle (Ω_1) which are different from T and A, B, C, D be four points on (Ω_2) such that the chords AB, CD pass through M, N , respectively. Prove that if AC, BD, MN have a common point K , then TK is the angle bisector of $\angle MTN$. * (Ω_2) is bigger than (Ω_1)
3	Let the integer $n \ge 2$, and x_1, x_2, \cdots, x_n be positive real numbers such that $\sum_{i=1}^n x_i = 1$. Prove that

$$\left(\sum_{i=1}^n \frac{1}{1-x_i}\right) \left(\sum_{1 \le i < j \le n} x_i x_j\right) \le \frac{n}{2}.$$

4 For 100 straight lines on a plane, let T be the set of all right-angled triangles bounded by some 3 lines. Determine, with proof, the maximum value of |T|.

Day 2

5 Let a, b, c, d are lengths of the sides of a convex quadrangle with the area equal to S, set $S = \{x_1, x_2, x_3, x_4\}$ consists of permutations x_i of (a, b, c, d). Prove that

$$S \le \frac{1}{2}(x_1x_2 + x_3x_4).$$

6 For a sequence $a_1, a_2, ..., a_m$ of real numbers, define the following sets

$$A = \{a_i | 1 \le i \le m\} \text{ and } B = \{a_i + 2a_j | 1 \le i, j \le m, i \ne j\}$$

Let *n* be a given integer, and n > 2. For any strictly increasing arithmetic sequence of positive integers, determine, with proof, the minimum number of elements of set $A \triangle B$, where $A \triangle B = (A \cup B) \setminus (A \cap B)$.

AoPS Community

2015 China Western Mathematical Olympiad

- 7 Let $a \in (0, 1)$, $f(z) = z^2 z + a$, $z \in \mathbb{C}$. Prove the following statement holds: For any complex number z with $|z| \ge 1$, there exists a complex number z_0 with $|z_0| = 1$, such that $|f(z_0)| \le |f(z)|$.
- 8 Let k be a positive integer, and $n = (2^k)!$. Prove that $\sigma(n)$ has at least a prime divisor larger than 2^k , where $\sigma(n)$ is the sum of all positive divisors of n.

Act of Problem Solving is an ACS WASC Accredited School.