2015 TST for EGMO in Serbia

www.artofproblemsolving.com/community/c180807
by Wolowizard

- \quad Find all polynomials $P(x)$ such that for every real x it hold $(x+100) P(x)-x P(x+1)=1$.
- Let $A B C D$ be cyclic quadriateral and let $A C$ and $B D$ intersect at E and $A B$ and $C D$ at F. Let K be point in plane such that $A B K C$ is parallelogram. Prove $\angle A F E=\angle C D F$.
- Define corner as a 'broken' line(in Cartesian coordinate plane) consisting of one vertical and one horizontal line, with ends at first point and last point of 'broken' line (for example $A B C$ is corner if B is in plane such that $A B \perp B C$ and $A B \| x$ or $A B \| y$ (note that in following statement one chooses one of such B)). In Cartesian coordinate plane there are n blue and n red points with all different x and y coordinates. Prove that one can draw n corners without common points such that every corner has one blue and one red end.
- Let $a_{n}{ }_{1}^{\infty}$ be array such that $a_{1}=2$ and for every $n \geq 1 a_{n+1}=2^{a_{n}}+2$. Let m, n be positive integers such that $m<n$. Prove that $a_{m} \mid a_{n}$.

