

## **AoPS Community**

# 2015 Korea National Olympiad

#### Korea National Olympiad 2015

www.artofproblemsolving.com/community/c182899 by buzzychaoz, rkm0959

| Day 1 |                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | For a positive integer $m$ , prove that the number of pairs of positive integers $(x, y)$ which satisfies the following two conditions is even or $0$ .                                                                                                                                                                                                                               |
|       | (i): $x^2 - 3y^2 + 2 = 16m$                                                                                                                                                                                                                                                                                                                                                           |
|       | (ii): $2y \le x - 1$                                                                                                                                                                                                                                                                                                                                                                  |
| 2     | Let the circumcircle of $\triangle ABC$ be $\omega$ . A point $D$ lies on segment $BC$ , and $E$ lies on segment $AD$ . Let ray $AD \cap \omega = F$ . A point $M$ , which lies on $\omega$ , bisects $AF$ and it is on the other side of $C$ with respect to $AF$ . Ray $ME \cap \omega = G$ , ray $GD \cap \omega = H$ , and $MH \cap AD = K$ . Prove that $B, E, C, K$ are cyclic. |
| 3     | Reals $a, b, c, x, y$ satisfies $a^2 + b^2 + c^2 + x^2 + y^2 = 1$ . Find the maximum value of                                                                                                                                                                                                                                                                                         |
|       | $(ax+by)^2 + (bx+cy)^2$                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                                       |
| 4     | For positive integers $n, k, l$ , we define the number of <i>l</i> -tuples of positive integers $(a_1, a_2, \cdots a_l)$ satisfying the following as $Q(n, k, l)$ .                                                                                                                                                                                                                   |
|       | (i): $n = a_1 + a_2 + \dots + a_l$                                                                                                                                                                                                                                                                                                                                                    |
|       | (ii): $a_1 > a_2 > \cdots > a_l > 0$ .                                                                                                                                                                                                                                                                                                                                                |
|       | (iii): $a_l$ is an odd number.                                                                                                                                                                                                                                                                                                                                                        |
|       | (iv): There are $k$ odd numbers out of $a_i$ .                                                                                                                                                                                                                                                                                                                                        |
|       | For example, from $9 = 8 + 1 = 6 + 3 = 6 + 2 + 1$ , we have $Q(9,1,1) = 1$ , $Q(9,1,2) = 2$ , $Q(9,1,3) = 1$ .                                                                                                                                                                                                                                                                        |
|       | Prove that if $n > k^2$ , $\sum_{l=1}^n Q(n,k,l)$ is 0 or an even number.                                                                                                                                                                                                                                                                                                             |
| Day 2 |                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all reals $x, y, z$ , we have                                                                                                                                                                                                                                                                                        |
|       | (f(x) + 1)(f(y) + f(z)) = f(xy + z) + f(xz - y)                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                                                                                                                                                       |

## **AoPS Community**

### 2015 Korea National Olympiad

- 2 An isosceles trapezoid ABCD, inscribed in  $\omega$ , satisfies AB = CD, AD < BC, AD < CD. A circle with center D and passing A hits BD, CD,  $\omega$  at  $E, F, P(\neq A)$ , respectively. Let  $AP \cap EF = Q$ , and  $\omega$  meet CQ and the circumcircle of  $\triangle BEQ$  at  $R(\neq C)$ ,  $S(\neq B)$ , respectively. Prove that  $\angle BER = \angle FSC$ .
- **3** A positive integer *n* is given. If there exists sets  $F_1, F_2, \dots F_m$  satisfying the following conditions, prove that  $m \le n$ . (For sets *A*, *B*, |A| is the number of elements of *A*. A B is the set of elements that are in *A* but not *B*. min(x, y) is the number that is not larger than the other.)

(i): For all  $1 \le i \le m$ ,  $F_i \subseteq \{1, 2, \dots, n\}$ 

(ii): For all  $1 \le i < j \le m$ ,  $\min(|F_i - F_j|, |F_j - F_i|) = 1$ 

**4** For a positive integer n,  $a_1, a_2, \dots a_k$  are all positive integers without repetition that are not greater than n and relatively prime to n. If k > 8, prove the following.

$$\sum_{i=1}^{k} |a_i - \frac{n}{2}| < \frac{n(k-4)}{2}$$

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱