AoPS Community

Korea National Olympiad 2015

www.artofproblemsolving.com/community/c182899
by buzzychaoz, rkm0959

Day 1

1 For a positive integer m, prove that the number of pairs of positive integers (x, y) which satisfies the following two conditions is even or 0 .
(i): $x^{2}-3 y^{2}+2=16 m$
(ii): $2 y \leq x-1$

2 Let the circumcircle of $\triangle A B C$ be ω. A point D lies on segment $B C$, and E lies on segment $A D$. Let ray $A D \cap \omega=F$. A point M, which lies on ω, bisects $A F$ and it is on the other side of C with respect to $A F$. Ray $M E \cap \omega=G$, ray $G D \cap \omega=H$, and $M H \cap A D=K$. Prove that B, E, C, K are cyclic.

3 Reals a, b, c, x, y satisfies $a^{2}+b^{2}+c^{2}+x^{2}+y^{2}=1$. Find the maximum value of

$$
(a x+b y)^{2}+(b x+c y)^{2}
$$

4 For positive integers n, k, l, we define the number of l-tuples of positive integers ($a_{1}, a_{2}, \cdots a_{l}$) satisfying the following as $Q(n, k, l)$.
(i): $n=a_{1}+a_{2}+\cdots+a_{l}$
(ii): $a_{1}>a_{2}>\cdots>a_{l}>0$.
(iii): a_{l} is an odd number.
(iv): There are k odd numbers out of a_{i}.

For example, from $9=8+1=6+3=6+2+1$, we have $Q(9,1,1)=1, Q(9,1,2)=2$, $Q(9,1,3)=1$.

Prove that if $n>k^{2}, \sum_{l=1}^{n} Q(n, k, l)$ is 0 or an even number.

Day 2

1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all reals x, y, z, we have

$$
(f(x)+1)(f(y)+f(z))=f(x y+z)+f(x z-y)
$$

2 An isosceles trapezoid $A B C D$, inscribed in ω, satisfies $A B=C D, A D<B C, A D<C D$. A circle with center D and passing A hits $B D, C D, \omega$ at $E, F, P(\neq A)$, respectively. Let $A P \cap E F=Q$, and ω meet $C Q$ and the circumcircle of $\triangle B E Q$ at $R(\neq C), S(\neq B)$, respectively.
Prove that $\angle B E R=\angle F S C$.
3 A positive integer n is given. If there exists sets $F_{1}, F_{2}, \cdots F_{m}$ satisfying the following conditions, prove that $m \leq n$. (For sets $A, B,|A|$ is the number of elements of $A . A-B$ is the set of elements that are in A but not $B \cdot \min (x, y)$ is the number that is not larger than the other.)
(i): For all $1 \leq i \leq m, F_{i} \subseteq\{1,2, \cdots, n\}$
(ii): For all $1 \leq i<j \leq m, \min \left(\left|F_{i}-F_{j}\right|,\left|F_{j}-F_{i}\right|\right)=1$

4 For a positive integer $n, a_{1}, a_{2}, \cdots a_{k}$ are all positive integers without repetition that are not greater than n and relatively prime to n. If $k>8$, prove the following.

$$
\sum_{i=1}^{k}\left|a_{i}-\frac{n}{2}\right|<\frac{n(k-4)}{2}
$$

