## AoPS Community

## 2015 South Africa National Olympiad

## South Africa National Olympiad 2015

www.artofproblemsolving.com/community/c182901
by moyamo

1 Points $E$ and $F$ lie inside a square $A B C D$ such that the two triangles $A B F$ and $B C E$ are equilateral. Show that $D E F$ is an equilateral triangle.

2 Determine all pairs of real numbers $a$ and $x$ that satisfy the simultaneous equations

$$
5 x^{3}+a x^{2}+8=0
$$

and

$$
5 x^{3}+8 x^{2}+a=0 .
$$

3 We call a divisor $d$ of a positive integer $n$ special if $d+1$ is also a divisor of $n$. Prove: at most half the positive divisors of a positive integer can be special. Determine all positive integers for which exactly half the positive divisors are special.

4 Let $A B C$ be an acute-angled triangle with $A B<A C$, and let points $D$ and $E$ be chosen on the side $A C$ and $B C$ respectively in such a way that $A D=A E=A B$. The circumcircle of $A B E$ intersects the line $A C$ at $A$ and $F$ and the line $D E$ at $E$ and $P$. Prove that $P$ is the circumcentre of $B D F$.

5 Several small villages are situated on the banks of a straight river. On one side, there are 20 villages in a row, and on the other there are 15 villages in a row. We would like to build bridges, each of which connects a village on the one side with a village on the other side. The bridges must not cross, and it should be possible to get from any village to any other village using only those bridges (and not any roads that might exist between villages on the same side of the river). How many different ways are there to build the bridges.

6 Suppose that $a$ is an integer and that $n!+a$ divides $(2 n)$ ! for infinitely many positive integers $n$. Prove that $a=0$.

