

AoPS Community

National Math Olympiad (3rd round) 2015

www.artofproblemsolving.com/community/c182912 by buzzychaoz, AHZOLFAGHARI, andria, mojyla222

– Algebra

1 x, y, z are three real numbers inequal to zero satisfying x + y + z = xyz. Prove that

$$\sum \left(\frac{x^2 - 1}{x}\right)^2 \ge 4$$

Proposed by Amin Fathpour

- **2** Prove that there are no functions $f, g : \mathbb{R} \to \mathbb{R}$ such that $\forall x, y \in \mathbb{R} : f(x^2 + g(y)) f(x^2) + g(y) g(x) \le 2y$ and $f(x) \ge x^2$. Proposed by Mohammad Ahmadi
- **3** Does there exist an irreducible two variable polynomial $f(x, y) \in \mathbb{Q}[x, y]$ such that it has only four roots (0, 1), (1, 0), (0, -1), (-1, 0) on the unit circle.
- 4 $p(x) \in \mathbb{C}[x]$ is a polynomial such that: $\forall z \in \mathbb{C}, |z| = 1 \Longrightarrow p(z) \in \mathbb{R}$ Prove that p(x) is constant.
- **5** Find all polynomials $p(x) \in \mathbb{R}[x]$ such that for all $x \in \mathbb{R}$: $p(5x)^2 3 = p(5x^2 + 1)$ such that: $a)p(0) \neq 0 \ b)p(0) = 0$
- 6 $a_1, a_2, \dots, a_n > 0$ are positive real numbers such that $\sum_{i=1}^n \frac{1}{a_i} = n$ prove that: $\sum_{i < j} \left(\frac{a_i a_j}{a_i + a_j} \right)^2 \le \frac{n^2}{2} \left(1 \frac{n}{\sum_{i=1}^n a_i} \right)$

– Number Theory

- **1** Prove that there are infinitely natural numbers *n* such that *n* can't be written as a sum of two positive integers with prime factors less than 1394.
- 2 $M_0 \subset \mathbb{N}$ is a non-empty set with a finite number of elements. Ali produces sets $M_1, M_2, ..., M_n$ in the following order. In step n, Ali chooses an element of M_{n-1} like b_n and defines M_n as

$$M_n = \{b_n m + 1 | m \in M_{n-1}\}$$

AoPS Community

2015 Iran MO (3rd round)

Prove that at some step Ali reaches a set which no element of it divides another element of it.

3 Let p > 5 be a prime number and $A = \{b_1, b_2, \dots, b_{\frac{p-1}{2}}\}$ be the set of all quadratic residues modulo p, excluding zero. Prove that there doesn't exist any natural a, c satisfying (ac, p) = 1 such that set $B = \{ab_1 + c, ab_2 + c, \dots, ab_{\frac{p-1}{2}} + c\}$ and set A are disjoint modulo p.

This problem was proposed by Amir Hossein Pooya.

- 4 a, b, c, d, k, l are positive integers such that for every natural number n the set of prime factors of $n^k + a^n + c, n^l + b^n + d$ are same. prove that k = l, a = b, c = d.
- 5 p > 30 is a prime number. Prove that one of the following numbers is in form of $x^2 + y^2$.

$$p+1, 2p+1, 3p+1, ..., (p-3)p+1$$

-	Geometry
1	Let $ABCD$ be the trapezoid such that $AB \parallel CD$. Let E be an arbitrary point on AC . point F lies on BD such that $BE \parallel CF$. Prove that circumcircles of $\triangle ABF$, $\triangle BED$ and the line AC are concurrent.
2	Let <i>ABC</i> be a triangle with orthocenter <i>H</i> and circumcenter <i>O</i> . Let <i>K</i> be the midpoint of <i>AH</i> . point <i>P</i> lies on <i>AC</i> such that $\angle BKP = 90^{\circ}$. Prove that <i>OP</i> $\parallel BC$.
3	Let <i>ABC</i> be a triangle. consider an arbitrary point <i>P</i> on the plain of $\triangle ABC$. Let <i>R</i> , <i>Q</i> be the reflections of <i>P</i> wrt <i>AB</i> , <i>AC</i> respectively. Let $RQ \cap BC = T$. Prove that $\angle APB = \angle APC$ if and if only $\angle APT = 90^{\circ}$.
4	Let <i>ABC</i> be a triangle with incenter <i>I</i> . Let <i>K</i> be the midpoint of <i>AI</i> and $BI \cap \odot(\triangle ABC) = M, CI \cap \odot(\triangle ABC) = N$. points <i>P</i> , <i>Q</i> lie on <i>AM</i> , <i>AN</i> respectively such that $\angle ABK = \angle PBC, \angle AC \angle QCB$. Prove that <i>P</i> , <i>Q</i> , <i>I</i> are collinear.
5	Let ABC be a triangle with orthocenter H and circumcenter O . Let R be the radius of circum- circle of $\triangle ABC$. Let A', B', C' be the points on $\overrightarrow{AH}, \overrightarrow{BH}, \overrightarrow{CH}$ respectively such that $AH.AA' = R^2, BH.BB' = R^2, CH.CC' = R^2$. Prove that O is incenter of $\triangle A'B'C'$.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.