Art of Problem Solving

AoPS Community

National Math Olympiad (3rd round) 2015

www.artofproblemsolving.com/community/c182912
by buzzychaoz, AHZOLFAGHARI, andria, mojyla222

- Algebra
$1 x, y, z$ are three real numbers inequal to zero satisfying $x+y+z=x y z$.
Prove that

$$
\sum\left(\frac{x^{2}-1}{x}\right)^{2} \geq 4
$$

Proposed by Amin Fathpour

2 Prove that there are no functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x, y \in \mathbb{R}: f\left(x^{2}+g(y)\right)-f\left(x^{2}\right)+$ $g(y)-g(x) \leq 2 y$
and $f(x) \geq x^{2}$.
Proposed by Mohammad Ahmadi
3 Does there exist an irreducible two variable polynomial $f(x, y) \in \mathbb{Q}[x, y]$ such that it has only four roots $(0,1),(1,0),(0,-1),(-1,0)$ on the unit circle.
$4 \quad p(x) \in \mathbb{C}[x]$ is a polynomial such that: $\forall z \in \mathbb{C},|z|=1 \Longrightarrow p(z) \in \mathbb{R}$ Prove that $p(x)$ is constant.

5 Find all polynomials $p(x) \in \mathbb{R}[x]$ such that for all $x \in \mathbb{R}: p(5 x)^{2}-3=p\left(5 x^{2}+1\right)$ such that: a) $p(0) \neq 0 b) p(0)=0$
$6 \quad a_{1}, a_{2}, \ldots, a_{n}>0$ are positive real numbers such that $\sum_{i=1}^{n} \frac{1}{a_{i}}=n$ prove that: $\sum_{i<j}\left(\frac{a_{i}-a_{j}}{a_{i}+a_{j}}\right)^{2} \leq$ $\frac{n^{2}}{2}\left(1-\frac{n}{\sum_{i=1}^{n} a_{i}}\right)$

- Number Theory

1 Prove that there are infinitely natural numbers n such that n can't be written as a sum of two positive integers with prime factors less than 1394.
$2 \quad M_{0} \subset \mathbb{N}$ is a non-empty set with a finite number of elements.
Ali produces sets $M_{1}, M_{2}, \ldots, M_{n}$ in the following order.
In step n, Ali chooses an element of M_{n-1} like b_{n} and defines M_{n} as

$$
M_{n}=\left\{b_{n} m+1 \mid m \in M_{n-1}\right\}
$$

Prove that at some step Ali reaches a set which no element of it divides another element of it.

3 Let $p>5$ be a prime number and $A=\left\{b_{1}, b_{2}, \ldots, b_{\frac{p-1}{2}}\right\}$ be the set of all quadratic residues modulo p, excluding zero. Prove that there doesn't exist any natural a, c satisfying $(a c, p)=1$ such that set $B=\left\{a b_{1}+c, a b_{2}+c, \ldots, a b_{\frac{p-1}{2}}+c\right\}$ and set A are disjoint modulo p.
This problem was proposed by Amir Hossein Pooya.
$4 \quad a, b, c, d, k, l$ are positive integers such that for every natural number n the set of prime factors of $n^{k}+a^{n}+c, n^{l}+b^{n}+d$ are same. prove that $k=l, a=b, c=d$.
$5 \quad p>30$ is a prime number. Prove that one of the following numbers is in form of $x^{2}+y^{2}$.

$$
p+1,2 p+1,3 p+1, \ldots .,(p-3) p+1
$$

- Geometry

1 Let $A B C D$ be the trapezoid such that $A B \| C D$. Let E be an arbitrary point on $A C$. point F lies on $B D$ such that $B E \| C F$. Prove that circumcircles of $\triangle A B F, \triangle B E D$ and the line $A C$ are concurrent.

2 Let $A B C$ be a triangle with orthocenter H and circumcenter O. Let K be the midpoint of $A H$. point P lies on $A C$ such that $\angle B K P=90^{\circ}$. Prove that $O P \| B C$.

3 Let $A B C$ be a triangle. consider an arbitrary point P on the plain of $\triangle A B C$. Let R, Q be the reflections of P wrt $A B, A C$ respectively. Let $R Q \cap B C=T$. Prove that $\angle A P B=\angle A P C$ if and if only $\angle A P T=90^{\circ}$.

4 Let $A B C$ be a triangle with incenter I. Let K be the midpoint of $A I$ and $B I \cap \odot(\triangle A B C)=$ $M, C I \cap \odot(\triangle A B C)=N$. points P, Q lie on $A M, A N$ respectively such that $\angle A B K=\angle P B C, \angle A C K=$ $\angle Q C B$. Prove that P, Q, I are collinear.

5 Let $A B C$ be a triangle with orthocenter H and circumcenter O. Let R be the radius of circumcircle of $\triangle A B C$. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points on $\overrightarrow{A H}, \overrightarrow{B H}, \overrightarrow{C H}$ respectively such that $A H . A A^{\prime}=$ $R^{2}, B H . B B^{\prime}=R^{2}, C H . C C^{\prime}=R^{2}$. Prove that O is incenter of $\triangle A^{\prime} B^{\prime} C^{\prime}$.

