AoPS Community

Estonia Team Selection Test 1996

www.artofproblemsolving.com/community/c186104
by IstekOlympiadTeam

- Day 1

1 Suppose that x, y and $\frac{x^{2}+y^{2}+6}{x y}$ are positive integers. Prove that $\frac{x^{2}+y^{2}+6}{x y}$ is a perfect cube.
2 Let a, b, c be the sides of a triangle, α, β, γ the corresponding angles and r the inradius. Prove that

$$
a \cdot \sin \alpha+b \cdot \sin \beta+c \cdot \sin \gamma \geq 9 r
$$

3 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy for all x :
(i) $f(x)=-f(-x)$;
(ii) $f(x+1)=f(x)+1$;
(iii) $f\left(\frac{1}{x}\right)=\frac{1}{x^{2}} f(x)$ for $x \neq 0$

- Day 2

1 Prove that the polynomial $P_{n}(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}$ has no real zeros if n is even and has exatly one real zero if n is odd

2 Let H be the orthocenter of an obtuse triangle $A B C$ and $A_{1} B_{1} C_{1}$ arbitrary points on the sides $B C, A C, A B$ respectively.Prove that the tangents drawn from H to the circles with diametrs $A A_{1}, B B_{1}, C C_{1}$ are equal.

3 Each face of a cube is divided into n^{2} equal squares. The vertices of the squares are called nodes, so each face has $(n+1)^{2}$ nodes.
(a) If $n=2$,does there exist a closed polygonal line whose links are sids of the squares and which passes through each node exactly once?
(b) Prove that, for each n, such a polygonal line divides the surface area of the cube into two equal parts

