

AoPS Community

Estonia Team Selection Test 1996

www.artofproblemsolving.com/community/c186104 by IstekOlympiadTeam

-	Day 1
1	Suppose that x, y and $\frac{x^2+y^2+6}{xy}$ are positive integers . Prove that $\frac{x^2+y^2+6}{xy}$ is a perfect cube.
2	Let a, b, c be the sides of a triangle, α, β, γ the corresponding angles and r the inradius. Prove that $a \cdot sin\alpha + b \cdot sin\beta + c \cdot sin\gamma \ge 9r$
3	Find all functions $f : \mathbb{R} \to \mathbb{R}$ which satisfy for all x :
	(i) f(x) = -f(-x);
	(ii) f(x+1) = f(x) + 1;
	(<i>iii</i>) $f\left(\frac{1}{x}\right) = \frac{1}{x^2}f(x)$ for $x \neq 0$
-	Day 2
-	Day 2 Prove that the polynomial $P_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ has no real zeros if n is even and has exatly one real zero if n is odd
- 1 2	Day 2 Prove that the polynomial $P_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ has no real zeros if n is even and has exatly one real zero if n is odd Let H be the orthocenter of an obtuse triangle ABC and $A_1B_1C_1$ arbitrary points on the sides BC , AC , AB respectively. Prove that the tangents drawn from H to the circles with diametrs AA_1 , BB_1 , CC_1 are equal.
- 1 2 3	Day 2 Prove that the polynomial $P_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ has no real zeros if n is even and has exatly one real zero if n is odd Let H be the orthocenter of an obtuse triangle ABC and $A_1B_1C_1$ arbitrary points on the sides BC , AC , AB respectively.Prove that the tangents drawn from H to the circles with diametrs AA_1 , BB_1 , CC_1 are equal. Each face of a cube is divided into n^2 equal squares. The vertices of the squares are called <i>nodes</i> , so each face has $(n + 1)^2$ nodes.
- 1 2 3	Day 2 Prove that the polynomial $P_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ has no real zeros if n is even and has exatly one real zero if n is odd Let H be the orthocenter of an obtuse triangle ABC and $A_1B_1C_1$ arbitrary points on the sides BC, AC, AB respectively.Prove that the tangents drawn from H to the circles with diametrs AA_1, BB_1, CC_1 are equal. Each face of a cube is divided into n^2 equal squares. The vertices of the squares are called <i>nodes</i> , so each face has $(n + 1)^2$ nodes. (a) If $n = 2$, does there exist a closed polygonal line whose links are sids of the squares and which passes through each node exactly once?