Art of Problem Solving

AoPS Community

Estonia Team Selection Test 1997

www.artofproblemsolving.com/community/c186121
by IstekOlympiadTeam

- Day 1

1 In a triangle $A B C$ points A_{1}, B_{1}, C_{1} are the midpoints of $B C, C A, A B$ respectively, and A_{2}, B_{2}, C_{2} are the midpoints of the altitudes from A, B, C respectively. Show that the lines $A_{1} A_{2}, B_{1} B_{2}, C_{1}, C_{2}$ are concurrent.

2 Prove that for all positive real numbers $a_{1}, a_{2}, \cdots a_{n}$

$$
\frac{1}{\frac{1}{1+a_{1}}+\frac{1}{1+a_{2}}+\cdots+\frac{1}{1+a_{n}}}-\frac{1}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}} \geq \frac{1}{n}
$$

When does the inequality hold?
3 There are n boyfriend-girlfriend pairs at a party. Initially all the girls sit at a round table. For the first dance, each boy invites one of the girls to dance with.After each dance, a boy takes the girl he danced with to her seat, and for the next dance he invites the girl next to her in the counterclockwise direction. For which values of n can the girls be selected in such a way that in every dance at least one boy danced with his girlfriend, assuming that there are no less than n dances?

- Day 2

1 (a) Is it possible to partition the segment $[0,1]$ into two sets A and B and to define a continuous function f such that for every $x \in A f(x)$ is in B, and for every $x \in B f(x)$ is in A ?
(b) The same question with $[0,1]$ replaced by $[0,1)$.
2 A quadrilateral $A B C D$ is inscribed in a circle. On each of the sides $A B, B C, C D, D A$ one erects a rectangle towards the interior of the quadrilateral, the other side of the rectangle being equal to $C D, D A, A B, B C$, respectively. Prove that the centers of these four rectangles are vertices of a rectangle.

3 It is known that for every integer $n>1$ there is a prime number among the numbers $n+1, n+$ $2, \ldots, 2 n-1$. Determine all positive integers n with the following property. Every integer $m>1$ less than n and coprime to n is prime.

