AoPS Community

Japan MO Finals 2021

www.artofproblemsolving.com/community/c1944236
by maple116

1 Find all functions from positive integers to themselves, such that for any positive integers m, n the two conditions below are equivalent: n divides m.
$f(n)$ divides $f(m)-n$.
2 Let $n \geq 2$ be an integer. Players A and B play a game using $n \times 2021$ grid of square unit cells. Firstly, A paints each cell either black of white. B places a piece in one of the cells in the uppermost row, and designates one of the cells in the lowermost row as the goal. Then, A repeats the following operation $n-1$ times:
When the cell with the piece is painted white, A moves the piece to the cell one below.
Otherwise, A moves the piece to the next cell on the left or right, and then to the cell one below. Find the minimum possible value of n such that A can always move a piece to the goal, regardless of B 's choice.

3 Points D, E on the side $A B, A C$ of an acute-angled triangle $A B C$ respectively satisfy $B D=$ $C E$. Furthermore, points P on the segmet $D E$ and Q on the arc $B C$ of the circle $A B C$ not containing A satisfy $B P: P C=E Q: Q D$. Points A, B, C, D, E, P, Q are pairwise distinct. Prove that $\angle B P C=\angle B A C+\angle E Q D$ holds.

4 Let $a_{1}, a_{2}, \ldots, a_{2021}$ be 2021 integers which satisfy

$$
a_{n+5}+a_{n}>a_{n+2}+a_{n+3}
$$

for all integers $n=1,2, \ldots, 2016$. Find the minimum possible value of the difference between the maximum value and the minimum value among $a_{1}, a_{2}, \ldots, a_{2021}$.

5 Let n be a positive integer. Find all integers k among $1,2, \ldots, 2 n^{2}$ which satisfy the following condition:
There is a $2 n \times 2 n$ grid of square unit cells. When k different cells are painted black while the other cells are painted white, the minimum possible number of 2×2 squares that contain both black and white cells is $2 n-1$.

