AoPS Community

IMC 1995

www.artofproblemsolving.com/community/c1950632
by Tintarn, sqrtX

- Day 1

1 Let X be a invertible matrix with columns $X_{1}, X_{2} \ldots, X_{n}$. Let Y be a matrix with columns $X_{2}, X_{3}, \ldots, X_{n}, 0$. Show that the matrices $A=Y X^{-1}$ and $B=X^{-1} Y$ have rank $n-1$ and have only 0 s for eigenvalues.

2 Let f be a continuous function on $[0,1]$ such that for every $x \in[0,1]$, we have $\int_{x}^{1} f(t) d t \geq \frac{1-x^{2}}{2}$. Show that $\int_{0}^{1} f(t)^{2} d t \geq \frac{1}{3}$.

3 Let f be twice continuously differentiable on $(0, \infty)$ such that $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=-\infty$ and $\lim _{x \rightarrow 0^{+}} f^{\prime \prime}(x)=$ ∞. Show that

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{f^{\prime}(x)}=0 .
$$

4 Let $F:(1, \infty) \rightarrow \mathbb{R}$ be the function defined by

$$
F(x)=\int_{x}^{x^{2}} \frac{d t}{\ln (t)} .
$$

Show that F is injective and find the set of values of F.
$5 \quad$ Let A and B be real $n \times n$ matrices. Assume there exist $n+1$ different real numbers $t_{1}, t_{2}, \ldots, t_{n+1}$ such that the matrices

$$
C_{i}=A+t_{i} B, i=1,2, \ldots, n+1
$$

are nilpotent. Show that both A and B are nilpotent.
$6 \quad$ Let $p>1$. Show that there exists a constant $K_{p}>0$ such that for every $x, y \in \mathbb{R}$ with $|x|^{p}+|y|^{p}=2$, we have

$$
(x-y)^{2} \leq K_{p}\left(4-(x+y)^{2}\right) .
$$

- Day 2

$7 \quad$ Let A be a 3×3 real matrix such that the vectors $A u$ and u are orthogonal for every column vector $u \in \mathbb{R}^{3}$. Prove that:
a) $A^{T}=-A$.
b) there exists a vector $v \in \mathbb{R}^{3}$ such that $A u=v \times u$ for every $u \in \mathbb{R}^{3}$, where $v \times u$ denotes the vector product in \mathbb{R}^{3}.

8 Let $\left(b_{n}\right)_{n \in \mathbb{N}}$ be a sequence of positive real numbers such that $b_{0}=1, b_{n}=2+\sqrt{b_{n-1}}-$ $2 \sqrt{1+\sqrt{b_{n-1}}}$. Calculate

$$
\sum_{n=1}^{\infty} b_{n} 2^{n} .
$$

$9 \quad$ Let all roots of an n-th degree polynomial $P(z)$ with complex coefficients lie on the unit circle in the complex plane. Prove that all roots of the polynomial

$$
2 z P^{\prime}(z)-n P(z)
$$

lie on the same circle.
10 a) Prove that for every $\epsilon>0$ there is a positive integer n and real numbers $\lambda_{1}, \ldots, \lambda_{n}$ such that

$$
\max _{x \in[-1,1]}\left|x-\sum_{k=1}^{n} \lambda_{k} x^{2 k+1}\right|<\epsilon .
$$

b) Prove that for every odd continuous function f on $[-1,1]$ and for every $\epsilon>0$ there is a positive integer n and real numbers μ_{1}, \ldots, μ_{n} such that

$$
\max _{x \in[-1,1]}\left|f(x)-\sum_{k=1}^{n} \mu_{k} x^{2 k+1}\right|<\epsilon .
$$

11 a) Prove that every function of the form

$$
f(x)=\frac{a_{0}}{2}+\cos (x)+\sum_{n=2}^{N} a_{n} \cos (n x)
$$

with $\left|a_{0}\right|<1$ has positive as well as negative values in the period $[0,2 \pi)$.
b) Prove that the function

$$
F(x)=\sum_{n=1}^{100} \cos \left(n^{\frac{3}{2}} x\right)
$$

has at least 40 zeroes in the interval $(0,1000)$.

12 Suppose that $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of continuous functions on the interval $[0,1]$ such that

$$
\int_{0}^{1} f_{m}(x) f_{n}(x) d x= \begin{cases}1 & \text { if } n=m \\ 0 & \text { if } n \neq m\end{cases}
$$

and $\sup \left\{\left|f_{n}(x)\right|: x \in[0,1]\right.$ and $\left.n=1,2, \ldots\right\}<\infty$.
Show that there exists no subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ such that $\lim _{k \rightarrow \infty} f_{n_{k}}(x)$ exist for all $x \in[0,1]$.

