

AoPS Community

IMC 1995

www.artofproblemsolving.com/community/c1950632 by Tintarn, sqrtX

-	Day 1
---	-------

- 1 Let X be a invertible matrix with columns $X_1, X_2..., X_n$. Let Y be a matrix with columns $X_2, X_3, ..., X_n, 0$. Show that the matrices $A = YX^{-1}$ and $B = X^{-1}Y$ have rank n - 1 and have only 0s for eigenvalues.
- **2** Let f be a continuous function on [0, 1] such that for every $x \in [0, 1]$, we have $\int_x^1 f(t)dt \ge \frac{1-x^2}{2}$. Show that $\int_0^1 f(t)^2 dt \ge \frac{1}{3}$.
- 3 Let f be twice continuously differentiable on $(0, \infty)$ such that $\lim_{x\to 0^+} f'(x) = -\infty$ and $\lim_{x\to 0^+} f''(x) = \infty$. Show that

$$\lim_{x \to 0^+} \frac{f(x)}{f'(x)} = 0$$

4 Let $F: (1,\infty) \to \mathbb{R}$ be the function defined by

$$F(x) = \int_{x}^{x^2} \frac{dt}{\ln(t)}.$$

Show that F is injective and find the set of values of F.

5 Let *A* and *B* be real $n \times n$ matrices. Assume there exist n+1 different real numbers $t_1, t_2, \ldots, t_{n+1}$ such that the matrices

$$C_i = A + t_i B, \ i = 1, 2, \dots, n+1$$

are nilpotent. Show that both A and B are nilpotent.

6 Let p > 1. Show that there exists a constant $K_p > 0$ such that for every $x, y \in \mathbb{R}$ with $|x|^p + |y|^p = 2$, we have

$$(x-y)^2 \le K_p(4-(x+y)^2)$$

– Day 2

7 Let A be a 3 × 3 real matrix such that the vectors Au and u are orthogonal for every column vector u ∈ ℝ³. Prove that:
a) A^T = -A.

1995 IMC

AoPS Community

b) there exists a vector $v \in \mathbb{R}^3$ such that $Au = v \times u$ for every $u \in \mathbb{R}^3$, where $v \times u$ denotes the vector product in \mathbb{R}^3 .

8 Let $(b_n)_{n \in \mathbb{N}}$ be a sequence of positive real numbers such that $b_0 = 1$, $b_n = 2 + \sqrt{b_{n-1}} - 2\sqrt{1 + \sqrt{b_{n-1}}}$. Calculate

$$\sum_{n=1}^{\infty} b_n 2^n.$$

9 Let all roots of an *n*-th degree polynomial P(z) with complex coefficients lie on the unit circle in the complex plane. Prove that all roots of the polynomial

$$2zP'(z) - nP(z)$$

lie on the same circle.

10 a) Prove that for every $\epsilon > 0$ there is a positive integer *n* and real numbers $\lambda_1, \ldots, \lambda_n$ such that

$$\max_{x \in [-1,1]} |x - \sum_{k=1}^{n} \lambda_k x^{2k+1}| < \epsilon.$$

b) Prove that for every odd continuous function f on [-1,1] and for every $\epsilon > 0$ there is a positive integer n and real numbers μ_1, \ldots, μ_n such that

$$\max_{x \in [-1,1]} |f(x) - \sum_{k=1}^{n} \mu_k x^{2k+1}| < \epsilon.$$

a) Prove that every function of the form

$$f(x) = \frac{a_0}{2} + \cos(x) + \sum_{n=2}^{N} a_n \cos(nx)$$

with $|a_0| < 1$ has positive as well as negative values in the period $[0, 2\pi)$. b) Prove that the function

$$F(x) = \sum_{n=1}^{100} \cos(n^{\frac{3}{2}}x)$$

has at least 40 zeroes in the interval (0, 1000).

1995 IMC

AoPS Community

12 Suppose that $(f_n)_{n=1}^{\infty}$ is a sequence of continuous functions on the interval [0,1] such that

$$\int_0^1 f_m(x) f_n(x) dx = \begin{cases} 1 & \text{if } n = m \\ 0 & \text{if } n \neq m \end{cases}$$

and $\sup\{|f_n(x)| : x \in [0,1] \text{ and } n = 1, 2, ... \} < \infty$. Show that there exists no subsequence (f_{n_k}) of (f_n) such that $\lim_{k\to\infty} f_{n_k}(x)$ exist for all $x \in [0,1]$.

Art of Problem Solving is an ACS WASC Accredited School.