Art of Problem Solving

AoPS Community

IMC 1996

www.artofproblemsolving.com/community/c1960552
by Tintarn, sqrtX

- \quad Day 1

1 Let $A=\left(a_{i j}\right) \in M_{(n+1) \times(n+1)}(\mathbb{R})$ with $a_{i j}=a+|i-j| d$, where a and d are fixed real numbers.
Calculate $\operatorname{det}(A)$.
2 Evaluate the definite integral

$$
\int_{-\pi}^{\pi} \frac{\sin n x}{\left(1+2^{x}\right) \sin x} d x
$$

where n is a natural number.
3 The linear operator A on a finite-dimensional vector space V is called an involution if $A^{2}=I$, where I is the identity operator. Let $\operatorname{dim} V=n$.
i) Prove that for every involution A on V, there exists a basis of V consisting of eigenvectors of A.
ii) Find the maximal number of distinct pairwise commuting involutions on V.

4 Let $a_{1}=1, a_{n}=\frac{1}{n} \sum_{k=1}^{n-1} a_{k} a_{n-k}$ for $n \geq 2$. Show that
i) $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}<2^{-\frac{1}{2}}$;
ii) $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}} \geq \frac{2}{3}$

5 i) Let a, b be real numbers such that $b \leq 0$ and $1+a x+b x^{2} \geq 0$ for every $x \in[0,1]$.
Prove that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1}\left(1+a x+b x^{2}\right)^{n} d x= \begin{cases}-\frac{1}{a} & \text { if } a<0 \\ \infty & \text { if } a \geq 0\end{cases}
$$

ii) Let $f:[0,1] \rightarrow[0, \infty)$ be a function with a continuous second derivative and let $f^{\prime \prime}(x) \leq 0$ for every $x \in[0,1]$. Suppose that $L=\lim _{n \rightarrow \infty} n \int_{0}^{1}(f(x))^{n} d x$ exists and $0<L<\infty$. Prove that f^{\prime} has a constant sign and $\min _{x \in[0,1]}\left|f^{\prime}(x)\right|=L^{-1}$.
$6 \quad$ Upper content of a subset E of the plane \mathbb{R}^{2} is defined as

$$
\mathcal{C}(E)=\inf \left\{\sum_{i=1}^{n} \operatorname{diam}\left(E_{i}\right)\right\}
$$

where inf is taken over all finite families of sets $E_{1}, \ldots, E_{n} n \in \mathbb{N}$, in \mathbb{R}^{2} such that $E \subset \bigcup_{i=1}^{n} E_{i}$.

Lower content of E is defined as

$$
\mathcal{K}(E)=\sup \{\text { length }(L) \mid L \text { is a closed line segment onto which } E \text { can be contracted }\}
$$

Prove that
i) $\mathcal{C}(L)=$ length (L) if L is a closed line segment;
ii) $\mathcal{C}(E) \geq \mathcal{K}(E)$;
iii) the equality in ii) is not always true even if E is compact.

- Day 2

7 Prove that if $f:[0,1] \rightarrow[0,1]$ is a continuous function, then the sequence of iterates $x_{n+1}=$ $f\left(x_{n}\right)$ converges if and only if

$$
\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=0
$$

8 Let θ be a positive real number. Show that if $k \in \mathbb{N}$ and both $\cosh k \theta$ and $\cosh (k+1) \theta$ are rational, then so is $\cosh \theta$.

9 Let G be the subgroup of $G L_{2}(\mathbb{R})$ generated by A and B, where

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Let H consist of the matrices $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ in G for which $a_{11}=a_{22}=1$.
a) Show that H is an abelian subgroup of G.
b) Show that H is not finitely generated.

10 Let B be a bounded closed convex symmetric (with respect to the origin) set in \mathbb{R}^{2} with boundary Γ. Let B have the property that the ellipse of maximal area contained in B is the disc D of radius 1 centered at the origin with boundary C. Prove that $A \cap \Gamma \neq \emptyset$ for any arc A of C of length $l(A) \geq \frac{\pi}{2}$.

11 i) Prove that

$$
\lim _{x \rightarrow \infty} \sum_{n=1}^{\infty} \frac{n x}{\left(n^{2}+x\right)^{2}}=\frac{1}{2}
$$

ii) Prove that there is a positive constant c such that for every $x \in[1, \infty)$ we have

$$
\left|\sum_{n=1}^{\infty} \frac{n x}{\left(n^{2}+x\right)^{2}}-\frac{1}{2}\right| \leq \frac{c}{x}
$$

12 i) Prove that for every sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$, such that $a_{n}>0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_{n}<\infty$, we have

$$
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{\frac{1}{n}}<e \sum_{n=1}^{\infty} a_{n} .
$$

ii) Prove that for every $\epsilon>0$ there exists a sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ such that $b_{n}>0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} b_{n}<\infty$ and

$$
\sum_{n=1}^{\infty}\left(b_{1} b_{2} \cdots b_{n}\right)^{\frac{1}{n}}>(e-\epsilon) \sum_{n=1}^{\infty} b_{n}
$$

