Art of Problem Solving

AoPS Community

National Olympiad Second Round 2020

www.artofproblemsolving.com/community/c1963352
by CinarArslan, electrovector

Day 1 March 6th, 2021
1 Let $n>1$ be an integer and $X=\left\{1,2, \cdots, n^{2}\right\}$. If there exist x, y such that $x^{2} \mid y$ in all subsets of X with k elements, find the least possible value of k.

2 Let P be an interior point of acute triangle $\triangle A B C$, which is different from the orthocenter. Let D and E be the feet of altitudes from A to $B P$ and $C P$, and let F and G be the feet of the altitudes from P to sides $A B$ and $A C$. Denote by X the midpoint of $[A P]$, and let the second intersection of the circumcircles of triangles $\triangle D F X$ and $\triangle E G X$ lie on $B C$. Prove that $A P$ is perpendicular to $B C$ or $\angle P B A=\angle P C A$.

3 If x, y, z are positive real numbers find the minimum value of

$$
2 \sqrt{(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}-\sqrt{\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)}
$$

Day 2 March 7th, 2021
4 Let p be a prime number such that $\frac{28^{p}-1}{2 p^{2}+2 p+1}$ is an integer. Find all possible values of number of divisors of $2 p^{2}+2 p+1$.

5 Find all polynomials with real coefficients such that one can find an integer valued series a_{0}, a_{1}, \ldots satisfying $\lfloor P(x)\rfloor=a_{\left\lfloor x^{2}\right\rfloor}$ for all x real numbers.

62021 points are given on a circle. Each point is colored by one of the $1,2, \cdots, k$ colors. For all points and colors $1 \leq r \leq k$, there exist an arc such that at least half of the points on it are colored with r. Find the maximum possible value of k.

