Art of Problem Solving

AoPS Community

VI Caucasus Mathematical Olympiad

www.artofproblemsolving.com/community/c1967338
by bigant 146

- Juniors
- Day 1

1 Let a, b, c be real numbers such that $a^{2}+b=c^{2}, b^{2}+c=a^{2}, c^{2}+a=b^{2}$. Find all possible values of $a b c$.

2 In a triangle $A B C$ let K be a point on the median $B M$ such that $C K=C M$. It appears that $\angle C B M=2 \angle A B M$. Prove that $B C=M K$.

3 We have $n>2$ non-zero integers such that each one of them is divisible by the sum of the other $n-1$ numbers. Prove that the sum of all the given numbers is zero.

4 A square grid $2 n \times 2 n$ is constructed of matches (each match is a segment of length 1). By one move Peter can choose a vertex which (at this moment) is the endpoint of 3 or 4 matches and delete two matches whose union is a segment of length 2 . Find the least possible number of matches that could remain after a number of Peter's moves.

- Day 2

5 Let a, b, c be positive integers such that the product

$$
\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(b, c) \cdot \operatorname{gcd}(c, a)
$$

is a perfect square. Prove that the product

$$
\operatorname{lcm}(a, b) \cdot \operatorname{lcm}(b, c) \cdot \operatorname{lcm}(c, a)
$$

is also a perfect square.
6 A row of 2021 balls is given. Pasha and Vova play a game, taking turns to perform moves; Pasha begins. On each turn a boy should paint a non-painted ball in one of the three available colors: red, yellow, or green (initially all balls are non-painted). When all the balls are colored, Pasha wins, if there are three consecutive balls of different colors; otherwise Vova wins. Who has a winning strategy?
$7 \quad$ An acute triangle $A B C$ is given. Let $A D$ be its altitude, let H and O be its orthocenter and its circumcenter, respectively. Let K be the point on the segment $A H$ with $A K=H D$; let L be the point on the segment $C D$ with $C L=D B$. Prove that line $K L$ passes through O.

AoPS Community

2021 Caucasus Mathematical Olympiad

8 Let us call a set of positive integers nice, if its number of elements is equal to the average of all its elements. Call a number n amazing, if one can partition the set $\{1,2, \ldots, n\}$ into nice subsets.
a) Prove that any perfect square is amazing.
b) Prove that there exist infinitely many positive integers which are not amazing.

- Seniors
- Day 1

1 Integers from 1 to 100 are placed in a row in some order. Let us call a number large-right, if it is greater than each number to the right of it; let us call a number large-left, is it is greater than each number to the left of it. It appears that in the row there are exactly k large-right numbers and exactly k large-left numbers. Find the maximal possible value of k.

2 See Juniors 3

3 Let $n \geq 3$ be a positive integer. In the plane n points which are not all collinear are marked. Find the least possible number of triangles whose vertices are all marked.
(Recall that the vertices of a triangle are not collinear.)
4 In an acute triangle $A B C$ let $A H_{a}$ and $B H_{b}$ be altitudes. Let $H_{a} H_{b}$ intersect the circumcircle of $A B C$ at P and Q. Let A^{\prime} be the reflection of A in $B C$, and let B^{\prime} be the reflection of B in $C A$. Prove that $A^{\prime}, B^{\prime}, P, Q$ are concyclic.

- Day 2

$5 \quad$ A triangle Δ with sidelengths $a \leq b \leq c$ is given. It appears that it is impossible to construct a triangle from three segments whose lengths are equal to the altitudes of Δ. Prove that $b^{2}>a c$.

6 See Juniors 6

74 tokens are placed in the plane. If the tokens are now at the vertices of a convex quadrilateral P, then the following move could be performed: choose one of the tokens and shift it in the direction perpendicular to the diagonal of P not containing this token; while shifting tokens it is prohibited to get three collinear tokens.
Suppose that initially tokens were at the vertices of a rectangle Π, and after a number of moves tokens were at the vertices of one another rectangle Π^{\prime} such that Π^{\prime} is similar to Π but not equal to Π. Prove that Π is a square.

8 An infinite table whose rows and columns are numbered with positive integers, is given. For a sequence of functions $f_{1}(x), f_{2}(x), \ldots$ let us place the number $f_{i}(j)$ into the cell (i, j) of the table (for all $i, j \in \mathbb{N}$).
A sequence $f_{1}(x), f_{2}(x), \ldots$ is said to be nice, if all the numbers in the table are positive integers, and each positive integer appears exactly once. Determine if there exists a nice sequence of functions $f_{1}(x), f_{2}(x), \ldots$, such that each $f_{i}(x)$ is a polynomial of degree 101 with integer coefficients and its leading coefficient equals to 1.

