Art of Problem Solving

AoPS Community

Brazil National Olympiad 2020, took place in 15-16 March 2021
www.artofproblemsolving.com/community/c1968245
by Tintarn, Vloe, hydo2332, parmenides51, betongblander, mathisreal

Day 1 Monday, March 15 (2021)
1 Prove that there are positive integers $a_{1}, a_{2}, \ldots, a_{2020}$ such that

$$
\frac{1}{a_{1}}+\frac{1}{2 a_{2}}+\frac{1}{3 a_{3}}+\cdots+\frac{1}{2020 a_{2020}}=1 .
$$

2 For a positive integer a, define $F_{1}^{(a)}=1, F_{2}^{(a)}=a$ and for $n>2, F_{n}^{(a)}=F_{n-1}^{(a)}+F_{n-2}^{(a)}$. A positive integer is fibonatic when it is equal to $F_{n}^{(a)}$ for a positive integer a and $n>3$. Prove that there are infintely many not fibonatic integers.

3 Let r_{A}, r_{B}, r_{C} rays from point P. Define circles w_{A}, w_{B}, w_{C} with centers X, Y, Z such that w_{a} is tangent to r_{B}, r_{C}, w_{B} is tangent to r_{A}, r_{C} and w_{C} is tangent to r_{A}, r_{B}. Suppose P lies inside triangle $X Y Z$, and let s_{A}, s_{B}, s_{C} be the internal tangents to circles w_{B} and $w_{C} ; w_{A}$ and $w_{C} ; w_{A}$ and w_{B} that do not contain rays r_{A}, r_{B}, r_{C} respectively. Prove that s_{A}, s_{B}, s_{C} concur at a point Q, and also that P and Q are isotomic conjugates.
PS: The rays can be lines and the problem is still true.
Day 2 Tuesday, March 16 (2021)
$4 \quad$ Let $A B C$ be a triangle. The ex-circles touch sides $B C, C A$ and $A B$ at points U, V and W, respectively. Be r_{u} a straight line that passes through U and is perpendicular to $B C, r_{v}$ the straight line that passes through V and is perpendicular to $A C$ and r_{w} the straight line that passes through W and is perpendicular to $A B$. Prove that the lines r_{u}, r_{v} and r_{w} pass through the same point.
$5 \quad$ Let n and k be positive integers with $k \leq n$. In a group of n people, each one or always speak the truth or always lie. Arnaldo can ask questions for any of these people provided these questions are of the type: In set A, what is the parity of people who speak to true?, where A is a subset of size k of the set of n people. The answer can only be even or odd.
a) For which values of n and k is it possible to determine which people speak the truth and which people always lie?
b) What is the minimum number of questions required to determine which people speak the truth and which people always lie, when that number is finite?

AoPS Community

2020 Brazil National Olympiad

$6 \quad$ Let $f(x)=2 x^{2}+x-1, f^{0}(x)=x$ and $f^{n+1}(x)=f\left(f^{n}(x)\right)$ for all real x and $n \geq 0$ integer .
(a) Determine the number of real distinct solutions of the equation of $f^{3}(x)=x$.
(b) Determine, for each integer $n \geq 0$, the number of real distinct solutions of the equation $f^{n}(x)=0$.

- \quad level 2

1 Let $A B C$ be an acute triangle and $A D$ a height. The angle bissector of $\angle D A C$ intersects $D C$ at E. Let F be a point on $A E$ such that $B F$ is perpendicular to $A E$. If $\angle B A E=45$, find $\angle B F C$.

2 The following sentece is written on a board:

The equation $x^{2}-824 x+\square 143=0$ has two integer solutions.
Where \square represents algarisms of a blurred number on the board. What are the possible equations originally on the board?

3 Consider an inifinte sequence x_{1}, x_{2}, \ldots of positive integers such that, for every integer $n \geq 1$: -If x_{n} is even, $x_{n+1}=\frac{x_{n}}{2}$;
-If x_{n} is odd, $x_{n+1}=\frac{x_{n}-1}{2}+2^{k-1}$, where $2^{k-1} \leq x_{n}<2^{k}$.
Determine the smaller possible value of x_{1} for which 2020 is in the sequence.
4 A positive integer is brazilian if the first digit and the last digit are equal. For instance, 4 and 4104 are brazilians, but 10 is not brazilian. A brazilian number is superbrazilian if it can be written as sum of two brazilian numbers. For instance, $101=99+2$ and $22=11+11$ are superbrazilians, but $561=484+77$ is not superbrazilian, because 561 is not brazilian. How many 4 -digit numbers are superbrazilians?

5 Let $A B C$ be a triangle and M the midpoint of $A B$. Let circumcircles of triangles $C M O$ and $A B C$ intersect at K where O is the circumcenter of $A B C$. Let P be the intersection of lines $O M$ and $C K$. Prove that $\angle P A K=\angle M C B$.
$6 \quad$ Let k be a positive integer. Arnaldo and Bernaldo play a game in a table 2020×2020, initially all the cells are empty. In each round a player chooses a empty cell and put one red token or one blue token, Arnaldo wins if in some moment, there are k consecutive cells in the same row or column with tokens of same color, if all the cells have a token and there aren't k consecutive cells(row or column) with same color, then Bernaldo wins. If the players play alternately and Arnaldo goes first, determine for which values of k, Arnaldo has the winning strategy.

