AoPS Community

China Team Selection Test 2021
www.artofproblemsolving.com/community/c1969772
by parmenides51, JustPostChinaTST, mofumofu, Tintarn, mathematics2003

Test 1 Day 1

1 Given positive integers m and n. Let $a_{i, j}(1 \leq i \leq m, 1 \leq j \leq n)$ be non-negative real numbers, such that

$$
a_{i, 1} \geq a_{i, 2} \geq \cdots \geq a_{i, n} \text { and } a_{1, j} \geq a_{2, j} \geq \cdots \geq a_{m, j}
$$

holds for all $1 \leq i \leq m$ and $1 \leq j \leq n$. Denote

$$
\begin{aligned}
& X_{i, j}=a_{1, j}+\cdots+a_{i-1, j}+a_{i, j}+a_{i, j-1}+\cdots+a_{i, 1}, \\
& Y_{i, j}=a_{m, j}+\cdots+a_{i+1, j}+a_{i, j}+a_{i, j+1}+\cdots+a_{i, n} .
\end{aligned}
$$

Prove that

$$
\prod_{i=1}^{m} \prod_{j=1}^{n} X_{i, j} \geq \prod_{i=1}^{m} \prod_{j=1}^{n} Y_{i, j}
$$

2 Given positive integers n and $k, n>k^{2}>4$. In a $n \times n$ grid, a k-group is a set of k unit squares lying in different rows and different columns.
Determine the maximal possible N, such that one can choose N unit squares in the grid and color them, with the following condition holds: in any k-group from the colored N unit squares, there are two squares with the same color, and there are also two squares with different colors.

3 Given positive integer n. Prove that for any integers $a_{1}, a_{2}, \cdots, a_{n}$, at least $\left\lceil\frac{n(n-6)}{19}\right\rceil$ numbers from the set $\left\{1,2, \cdots, \frac{n(n-1)}{2}\right\}$ cannot be represented as $a_{i}-a_{j}(1 \leq i, j \leq n)$.

Test 1 Day 2
4 Let $f(x), g(x)$ be two polynomials with integer coefficients. It is known that for infinitely many prime p, there exist integer m_{p} such that

$$
f(a) \equiv g\left(a+m_{p}\right) \quad(\bmod p)
$$

holds for all $a \in \mathbb{Z}$. Prove that there exists a rational number r such that

$$
f(x)=g(x+r) .
$$

AoPS Community

2021 China Team Selection Test

5 Given a triangle $A B C$, a circle Ω is tangent to $A B, A C$ at B, C, respectively. Point D is the midpoint of $A C, O$ is the circumcenter of triangle $A B C$. A circle Γ passing through A, C intersects the minor arc $B C$ on Ω at P, and intersects $A B$ at Q. It is known that the midpoint R of minor arc $P Q$ satisfies that $C R \perp A B$. Ray $P Q$ intersects line $A C$ at L, M is the midpoint of $A L, N$ is the midpoint of $D R$, and X is the projection of M onto $O N$. Prove that the circumcircle of triangle $D N X$ passes through the center of Γ.

6 Given positive integer n and r pairwise distinct primes $p_{1}, p_{2}, \cdots, p_{r}$. Initially, there are $(n+1)^{r}$ numbers written on the blackboard: $p_{1}^{i_{1}} p_{2}^{i_{2}} \cdots p_{r}^{i_{r}}\left(0 \leq i_{1}, i_{2}, \cdots, i_{r} \leq n\right)$.

Alice and Bob play a game by making a move by turns, with Alice going first. In Alice's round, she erases two numbers a, b (not necessarily different) and write $\operatorname{gcd}(a, b)$. In Bob's round, he erases two numbers a, b (not necessarily different) and write $\operatorname{lcm}(a, b)$. The game ends when only one number remains on the blackboard.

Determine the minimal possible M such that Alice could guarantee the remaining number no greater than M, regardless of Bob's move.

Test 2 Day 1

1 A cyclic quadrilateral $A B C D$ has circumcircle Γ, and $A B+B C=A D+D C$. Let E be the midpoint of arc $B C D$, and $F(\neq C)$ be the antipode of A wrt Γ. Let I, J, K be the incenter of $\triangle A B C$, the A-excenter of $\triangle A B C$, the incenter of $\triangle B C D$, respectively.
Suppose that a point P satisfies $\triangle B I C \stackrel{ \pm}{\sim} \triangle K P J$. Prove that $E K$ and $P F$ intersect on Γ.
2 Given positive integers $n, k, n \geq 2$. Find the minimum constant c satisfies the following assertion:
For any positive integer m and a $k n$-regular graph G with m vertices, one could color the vertices of G with n different colors, such that the number of monochrome edges is at most cm .

3 Given positive integers a, b, c which are pairwise coprime. Let $f(n)$ denotes the number of the non-negative integer solution (x, y, z) to the equation

$$
a x+b y+c z=n .
$$

Prove that there exists constants $\alpha, \beta, \gamma \in \mathbb{R}$ such that for any non-negative integer n,

$$
\left|f(n)-\left(\alpha n^{2}+\beta n+\gamma\right)\right|<\frac{1}{12}(a+b+c) .
$$

Test 2 Day 2
$4 \quad$ Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that for all positive integers m, n with $m \geq n$,

$$
f\left(m \varphi\left(n^{3}\right)\right)=f(m) \cdot \varphi\left(n^{3}\right) .
$$

AoPS Community

2021 China Team Selection Test

Here $\varphi(n)$ denotes the number of positive integers coprime to n and not exceeding n.
5 Let n be a positive integer and $a_{1}, a_{2}, \ldots a_{2 n+1}$ be positive reals. For $k=1,2, \ldots, 2 n+1$, denote $b_{k}=\max _{0 \leq m \leq n}\left(\frac{1}{2 m+1} \sum_{i=k-m}^{k+m} a_{i}\right)$, where indices are taken modulo $2 n+1$. Prove that the number of indices k satisfying $b_{k} \geq 1$ does not exceed $2 \sum_{i=1}^{2 n+1} a_{i}$.

6 Find the smallest positive real constant a, such that for any three points A, B, C on the unit circle, there exists an equilateral triangle $P Q R$ with side length a such that all of A, B, C lie on the interior or boundary of $\triangle P Q R$.

Test 3 Day 1

1 Given positive integer $n \geq 5$ and a convex polygon P, namely $A_{1} A_{2} \ldots A_{n}$. No diagonals of P are concurrent. Proof that it is possible to choose a point inside every quadrilateral $A_{i} A_{j} A_{k} A_{l}(1 \leq$ $i<j<k<l \leq n)$ not on diagonals of P, such that the $\binom{n}{4}$ points chosen are distinct, and any segment connecting these points intersect with some diagonal of P.

2 Given distinct positive integer $a_{1}, a_{2}, \ldots, a_{2020}$. For $n \geq 2021, a_{n}$ is the smallest number different from $a_{1}, a_{2}, \ldots, a_{n-1}$ which doesn't divide $a_{n-2020 \ldots a_{n-2} a_{n-1} \text {. Proof that every number large }}$ enough appears in the sequence.

3 Determine the greatest real number C, such that for every positive integer $n \geq 2$, there exists $x_{1}, x_{2}, \ldots, x_{n} \in[-1,1]$, so that

$$
\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) \geq C^{\frac{n(n-1)}{2}}
$$

- \quad Day 2

4 Proof that

$$
\sum_{m=1}^{n} 5^{\omega(m)} \leq \sum_{k=1}^{n}\left\lfloor\frac{n}{k}\right\rfloor \tau(k)^{2} \leq \sum_{m=1}^{n} 5^{\Omega(m)} .
$$

$5 \quad$ Determine all $f: R \rightarrow R$ such that

$$
f\left(x f(y)+y^{3}\right)=y f(x)+f(y)^{3}
$$

6 Proof that there exist constant λ, so that for any positive integer $m(\geq 2)$, and any lattice triangle T in the Cartesian coordinate plane, if T contains exactly one m-lattice point in its interior(not containing boundary), then T has area $\leq \lambda m^{3}$.

AoPS Community

2021 China Team Selection Test

PS. lattice triangles are triangles whose vertex are lattice points; m-lattice points are lattice points whose both coordinates are divisible by m.

Test 4 Day 1

1 Let $n(\geq 2)$ be a positive integer. Find the minimum m, so that there exists $x_{i j}(1 \leq i, j \leq n)$ satisfying:
(1)For every $1 \leq i, j \leq n, x_{i j}=\max \left\{x_{i 1}, x_{i 2}, \ldots, x_{i j}\right\}$ or $x_{i j}=\max \left\{x_{1 j}, x_{2 j}, \ldots, x_{i j}\right\}$.
(2)For every $1 \leq i \leq n$, there are at most m indices k with $x_{i k}=\max \left\{x_{i 1}, x_{i 2}, \ldots, x_{i k}\right\}$.
(3)For every $1 \leq j \leq n$, there are at most m indices k with $x_{k j}=\max \left\{x_{1 j}, x_{2 j}, \ldots, x_{k j}\right\}$.

2 Let triangle $A B C(A B<A C)$ with incenter I circumscribed in $\odot O$. Let M, N be midpoint of arc $\widehat{B A C}$ and $\widehat{B C}$, respectively. D lies on $\odot O$ so that $A D / / B C$, and E is tangency point of A-excircle of $\triangle A B C$. Point F is in $\triangle A B C$ so that $F I / / B C$ and $\angle B A F=\angle E A C$. Extend $N F$ to meet $\odot O$ at G, and extend $A G$ to meet line $I F$ at L. Let line $A F$ and $D I$ meet at K. Proof that $M L \perp N K$.

3 Find all positive integer $n(\geq 2)$ and rational $\beta \in(0,1)$ satisfying the following:
There exist positive integers $a_{1}, a_{2}, \ldots, a_{n}$, such that for any set $I \subseteq\{1,2, \ldots, n\}$ which contains at least two elements,

$$
S\left(\sum_{i \in I} a_{i}\right)=\beta \sum_{i \in I} S\left(a_{i}\right) .
$$

where $S(n)$ denotes sum of digits of decimal representation of n.

- Day 2

4 Suppose $x_{1}, x_{2}, \ldots, x_{60} \in[-1,1]$, find the maximum of

$$
\sum_{i=1}^{60} x_{i}^{2}\left(x_{i+1}-x_{i-1}\right)
$$

where $x_{i+60}=x_{i}$.
$5 \quad$ Find the smallest real α, such that for any convex polygon P with area 1, there exist a point M in the plane, such that the area of convex hull of $P \cup Q$ is at most α, where Q denotes the image of P under central symmetry with respect to M.

6 Let $n(\geq 2)$ be an integer. $2 n^{2}$ contestants participate in a Chinese chess competition, where any two contestant play exactly once. There may be draws. It is known that
(1)If A wins B and B wins C, then A wins C.
(2)there are at most $\frac{n^{3}}{16}$ draws.

Proof that it is possible to choose n^{2} contestants and label them $P_{i j}(1 \leq i, j \leq n)$, so that for any $i, j, i^{\prime}, j^{\prime} \in\{1,2, \ldots, n\}$, if $i<i^{\prime}$, then $P_{i j}$ wins $P_{i^{\prime} j^{\prime}}$.

