Art of Problem Solving

AoPS Community

Mathematical Olympiad 2021

www.artofproblemsolving.com/community/c1970513
by parmenides51, go_placidly

- Day 1

1 In convex quadrilateral $A B C D, \angle C A B=\angle B C D . P$ lies on line $B C$ such that $A P=P C, Q$ lies on line $A P$ such that $A C$ and $D Q$ are parallel, R is the point of intersection of lines $A B$ and $C D$, and S is the point of intersection of lines $A C$ and $Q R$. Line $A D$ meets the circumcircle of $A Q S$ again at T. Prove that $A B$ and $Q T$ are parallel.

2 Let n be a positive integer. Show that there exists a one-to-one function $\sigma:\{1,2, \ldots, n\} \rightarrow$ $\{1,2, \ldots, n\}$ such that

$$
\sum_{k=1}^{n} \frac{k}{(k+\sigma(k))^{2}}<\frac{1}{2} .
$$

$3 \quad$ Denote by \mathbb{Q}^{+}the set of positive rational numbers. A function $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}$ satisfies
$f(p)=1$ for all primes p, and
$f(a b)=a f(b)+b f(a)$ for all $a, b \in \mathbb{Q}^{+}$.
For which positive integers n does the equation $n f(c)=c$ have at least one solution c in \mathbb{Q}^{+}?
4 Determine the set of all polynomials $P(x)$ with real coefficients such that the set $\{P(n) \mid n \in \mathbb{Z}\}$ contains all integers, except possibly finitely many of them.

- Day 2

5 A positive integer is called lucky if it is divisible by 7, and the sum of its digits is also divisible by 7 . Fix a positive integer n. Show that there exists some lucky integer l such that $|n-l| \leq 70$.

6 A certain country wishes to interconnect 2021 cities with flight routes, which are always twoway, in the following manner:

There is a way to travel between any two cities either via a direct flight or via a sequence of connecting flights.
For every pair (A, B) of cities that are connected by a direct flight, there is another city C such that (A, C) and (B, C) are connected by direct flights.
Show that at least 3030 flight routes are needed to satisfy the two requirements.

7 Let a, b, c, and d be real numbers such that $a \geq b \geq c \geq d$ and

$$
\begin{gathered}
a+b+c+d=13 \\
a^{2}+b^{2}+c^{2}+d^{2}=43 .
\end{gathered}
$$

Show that $a b \geq 3+c d$.
8 In right triangle $A B C, \angle A C B=90^{\circ}$ and $\tan A>\sqrt{2} . M$ is the midpoint of $A B, P$ is the foot of the altitude from C, and N is the midpoint of $C P$. Line $A B$ meets the circumcircle of $C N B$ again at Q. R lies on line $B C$ such that $Q R$ and $C P$ are parallel, S lies on ray $C A$ past A such that $B R=R S$, and V lies on segment $S P$ such that $A V=V P$. Line $S P$ meets the circumcircle of $C P B$ again at T. W lies on ray $V A$ past A such that $2 A W=S T$, and O is the circumcenter of $S P M$. Prove that lines $O M$ and $B W$ are perpendicular.

