

AoPS Community

1964 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1971550 by parmenides51

1	Find the side lengths of the triangle <i>ABC</i> with area <i>S</i> and $\angle BAC = x$ such that the side <i>BC</i> is as short as possible.
2	Find all positive integers m, n such that $n + (n + 1) + (n + 2) + + (n + m) = 1000$.
3	Find a polynomial with integer coefficients which has $\sqrt{2}+\sqrt{3}$ and $\sqrt{2}+\sqrt[3]{3}$ as roots.
4	Points $H_1, H_2,, H_n$ are arranged in the plane so that each distance $H_iH_j \leq 1$. The point P is chosen to minimise $\max(PH_i)$. Find the largest possible value of $\max(PH_i)$ for $n = 3$. Find the best upper bound you can for $n = 4$.
5	$a_1, a_2,, a_n$ are constants such that $f(x) = 1 + a_1 cos x + a_2 cos 2x + + a_n cos nx \ge 0$ for all x . We seek estimates of a_1 . If $n = 2$, find the smallest and largest possible values of a_1 . Find corresponding estimates for other values of n .

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.

1