AoPS Community

www.artofproblemsolving.com/community/c1971550
by parmenides51

1 Find the side lengths of the triangle $A B C$ with area S and $\angle B A C=x$ such that the side $B C$ is as short as possible.
$2 \quad$ Find all positive integers m, n such that $n+(n+1)+(n+2)+\ldots+(n+m)=1000$.
3 Find a polynomial with integer coefficients which has $\sqrt{2}+\sqrt{3}$ and $\sqrt{2}+\sqrt[3]{3}$ as roots.
4 Points $H_{1}, H_{2}, \ldots, H_{n}$ are arranged in the plane so that each distance $H_{i} H_{j} \leq 1$. The point P is chosen to minimise $\max \left(P H_{i}\right)$. Find the largest possible value of $\max \left(P H_{i}\right)$ for $n=3$. Find the best upper bound you can for $n=4$.
$5 a_{1}, a_{2}, \ldots, a_{n}$ are constants such that $f(x)=1+a_{1} \cos x+a_{2} \cos 2 x+\ldots+a_{n} \cos n x \geq 0$ for all x. We seek estimates of a_{1}. If $n=2$, find the smallest and largest possible values of a_{1}. Find corresponding estimates for other values of n.

