AoPS Community

www.artofproblemsolving.com/community/c1971551
by parmenides51

1 The feet of the altitudes in the triangle $A B C$ are $A^{\prime}, B^{\prime}, C^{\prime}$. Find the angles of $A^{\prime} B^{\prime} C^{\prime}$ in terms of the angles A, B, C. Show that the largest angle in $A^{\prime} B^{\prime} C^{\prime}$ is at least as big as the largest angle in $A B C$. When is it equal?

2 Find all positive integers m, n such that $m^{3}-n^{3}=999$.
3 Show that for every real $x \geq \frac{1}{2}$ there is an integer n such that $\left|x-n^{2}\right| \leq \sqrt{x-\frac{1}{4}}$.
4 Find constants $A>B$ such that $\frac{f\left(\frac{1}{1+2 x}\right)}{f(x)}$ is independent of x, where $f(x)=\frac{1+A x}{1+B x}$ for all real $x \neq-\frac{1}{B}$. Put $a_{0}=1, a_{n+1}=\frac{1}{1+2 a_{n}}$. Find an expression for an by considering $f\left(a_{0}\right), f\left(a_{1}\right), \ldots$.
$5 \quad$ Let S be the set of all real polynomials $f(x)=a x^{3}+b x^{2}+c x+d$ such that $|f(x)| \leq 1$ for all $-1 \leq x \leq 1$. Show that the set of possible $|a|$ for f in S is bounded above and find the smallest upper bound.

