

AoPS Community

1966 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1971553 by parmenides51

- 1 Let $\{x\}$ denote the fractional part of x, x [x]. The sequences x_1, x_2, x_3, \dots and y_1, y_2, y_3, \dots are such that $\lim\{x_n\} = \lim\{y_n\} = 0$. Is it true that $\lim\{x_n + y_n\} = 0$? $\lim\{x_n y_n\} = 0$?
- 2 $a_1 + a_2 + ... + a_n = 0$, for some k we have $a_j \le 0$ for $j \le k$ and $a_j \ge 0$ for j > k. If ai are not all 0, show that $a_1 + 2a_2 + 3a_3 + ... + na_n > 0$.
- **3** Show that an integer $= 7 \mod 8$ cannot be sum of three squares.
- 4 Let $f(x) = 1 + \frac{2}{x}$. Put $f_1(x) = f(x)$, $f_2(x) = f(f_1(x))$, $f_3(x) = f(f_2(x))$, Find the solutions to $x = f_n(x)$ for n > 0.
- 5 Let f(r) be the number of lattice points inside the circle radius r, center the origin. Show that $\lim_{r\to\infty} \frac{f(r)}{r^2}$ exists and find it. If the limit is k, put $g(r) = f(r) - kr^2$. Is it true that $\lim_{r\to\infty} \frac{g(r)}{r^h} = 0$ for any h < 2?

