AoPS Community

www.artofproblemsolving.com/community/c1971558
by parmenides51
$1 \quad p$ parallel lines are drawn in the plane and q lines perpendicular to them are also drawn. How many rectangles are bounded by the lines?

2 You are given a ruler with two parallel straight edges a distance d apart. It may be used
(1) to draw the line through two points,
(2) given two points a distance $\geq d$ apart, to draw two parallel lines, one through each point,
(3) to draw a line parallel to a given line, a distance d away.

One can also (4) choose an arbitrary point in the plane,
and (5) choose an arbitrary point on a line.
Show how to construct :
(A) the bisector of a given angle, and
(B) the perpendicular to the midpoint of a given line segment.

3 Show that there are only finitely many triples (a, b, c) of positive integers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=$ $\frac{1}{1000}$.

4 The sequence $a_{1}, a_{2}, a_{3}, \ldots$ of positive reals is such that $\sum a_{i}$ diverges.
Show that there is a sequence $b_{1}, b_{2}, b_{3}, \ldots$ of positive reals such that $\lim b_{n}=0$ and $\sum a_{i} b_{i}$ diverges.
$5 a_{1}, a_{2}, a_{3}, \ldots$ are positive reals such that $a_{n}^{2} \geq a_{1}+a_{2}+\ldots+a_{n-1}$.
Show that for some $C>0$ we have $a_{n} \geq C n$ for all n.
6 The vertices of a triangle are lattice points. There are no lattice points on the sides (apart from the vertices) and n lattice points inside the triangle. Show that its area is $n+\frac{1}{2}$. Find the formula for the general case where there are also m lattice points on the sides (apart from the vertices).

