

AoPS Community

1968 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1971599 by parmenides51

1	Find the maximum and minimum values of $x^2 + 2y^2 + 3z^2$ for real x, y, z satisfying $x^2 + y^2 + z^2 = 1$.
2	How many different ways (up to rotation) are there of labeling the faces of a cube with the numbers $1, 2,, 6$?
3	Show that the sum of the squares of the sides of a quadrilateral is at least the sum of the squares of the diagonals. When does equality hold?
4	For $n \neq 0$, let f(n) be the largest k such that 3^k divides n. If M is a set of $n > 1$ integers, show that the number of possible values for $f(m-n)$, where m, n belong to M cannot exceed $n-1$.
5	Let a, b be non-zero integers. Let $m(a, b)$ be the smallest value of $\cos ax + \cos bx$ (for real x). Show that for some $r, m(a, b) \le r < 0$ for all a, b .

AoPS Online 🔯 AoPS Academy 🙋 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.