AoPS Community

www.artofproblemsolving.com/community/c1971601
by parmenides51
$1 \quad$ Find all integers m, n such that $m^{3}=n^{3}+n$.
2 Show that $\tan \frac{\pi}{3 n}$ is irrational for all positive integers n.
$3 a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ is a sequence of reals $b_{1, b} 2, b_{3}, \ldots, b_{n}$ is any rearrangement of the sequence $B_{1} \leq B_{2} \leq \ldots \leq B_{n}$. Show that $\sum a_{i} b_{i} \leq \sum a_{i} B_{i}$.

4 Define $g(x)$ as the largest value of $\left|y^{2}-x y\right|$ for y in $[0,1]$. Find the minimum value of g (for real $x)$.
$5 \quad$ Let $N=a_{1} a_{2} \ldots a_{n}$ in binary. Show that if $a_{1}-a_{2}+a_{3}-\ldots+(-1)^{n-1} a_{n}=0 \bmod 3$, then $N=0$ $\bmod 3$.

6 Given $3 n$ points in the plane, no three collinear, is it always possible to form n triangles (with vertices at the points), so that no point in the plane lies in more than one triangle?

