

AoPS Community

1969 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1971601 by parmenides51

1	Find all integers m, n such that $m^3 = n^3 + n$.
2	Show that $tan \frac{\pi}{3n}$ is irrational for all positive integers <i>n</i> .
3	$a_1 \leq a_2 \leq \leq a_n$ is a sequence of reals $b_{1,b} 2, b_3,, b_n$ is any rearrangement of the sequence $B_1 \leq B_2 \leq \leq B_n$. Show that $\sum a_i b_i \leq \sum a_i B_i$.
4	Define $g(x)$ as the largest value of $ y^2 - xy $ for y in $[0, 1]$. Find the minimum value of g (for real x).
5	Let $N = a_1 a_2 \dots a_n$ in binary. Show that if $a_1 - a_2 + a_3 - \dots + (-1)^{n-1} a_n = 0 \mod 3$, then $N = 0 \mod 3$.
6	Given $3n$ points in the plane, no three collinear, is it always possible to form n triangles (with vertices at the points), so that no point in the plane lies in more than one triangle?

AoPS Online AoPS Academy AoPS & Ao