

AoPS Community

1970 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1971602 by parmenides51

1 Show that infinitely many positive integers cannot be written as a sum of three fourth powers of integers.

- **2** 6 open disks in the plane are such that the center of no disk lies inside another. Show that no point lies inside all 6 disks.
- **3** A polynomial with integer coefficients takes the value 5 at five distinct integers. Show that it does not take the value 9 at any integer.
- 4 Let $p(x) = (x x_1)(x x_2)(x x_3)$, where x_1, x_2 and x_3 are real. Show that $p(x)p''(x) \le p'(x)^2$ for all x.
- **5** A 3×1 paper rectangle is folded twice to give a square side 1. The square is folded along a diagonal to give a right-angled triangle. A needle is driven through an interior point of the triangle, making 6 holes in the paper. The paper is then unfolded. Where should the point be in order to maximise the smallest distance between any two holes?
- 6 Show that $\frac{(n-m)!}{m!} \le \left(\frac{n}{2} + \frac{1}{2}\right)^{n-2m}$ for positive integers m, n with $2m \le n$.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱