AoPS Community

www.artofproblemsolving.com/community/c1971602
by parmenides51

1 Show that infinitely many positive integers cannot be written as a sum of three fourth powers of integers.

26 open disks in the plane are such that the center of no disk lies inside another. Show that no point lies inside all 6 disks.

3 A polynomial with integer coefficients takes the value 5 at five distinct integers. Show that it does not take the value 9 at any integer.

4 Let $p(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)$, where x_{1}, x_{2} and x_{3} are real. Show that $p(x) p^{\prime \prime}(x) \leq p^{\prime}(x)^{2}$ for all x.
$5 \quad$ A 3×1 paper rectangle is folded twice to give a square side 1 . The square is folded along a diagonal to give a right-angled triangle. A needle is driven through an interior point of the triangle, making 6 holes in the paper. The paper is then unfolded. Where should the point be in order to maximise the smallest distance between any two holes?

6 Show that $\frac{(n-m)!}{m!} \leq\left(\frac{n}{2}+\frac{1}{2}\right)^{n-2 m}$ for positive integers m, n with $2 m \leq n$.

