AoPS Community

www.artofproblemsolving.com/community/c1974564
by parmenides51

1 Find the largest real number a such that

$$
\left\{\begin{array}{l}
x-4 y=1 \\
a x+3 y=1
\end{array}\right.
$$

has an integer solution.
2 A rectangular grid of streets has m north-south streets and n east-west streets. For which $m, n>1$ is it possible to start at an intersection and drive through each of the other intersections just once before returning to the start?

3 A steak temperature 5° is put into an oven. After 15 minutes, it has temperature 45°. After another 15 minutes it has temperature 77°. The oven is at a constant temperature. The steak changes temperature at a rate proportional to the difference between its temperature and that of the oven. Find the oven temperature.
$4 \quad$ Put $x=\log _{10} 2, y=\log _{10} 3$. Then $15<16$ implies $1-x+y<4 x$, so $1+y<5 x$.
Derive similar inequalities from $80<81$ and $243<250$. Hence show that

$$
0.47<\log _{10} 3<0.482
$$

5 Show that

$$
\int_{0}^{1} \frac{1}{(1+x)^{n}} d x>1-\frac{1}{n}
$$

for all positive integers n.
$6 a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ are sequences of positive integers. Show that we can find $m<n$ such that $a_{m} \leq a_{n}$ and $b_{m} \leq b_{n}$.

