

AoPS Community

1973 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1974569 by parmenides51

- 1 $\log_8 2 = 0.2525$ in base 8 (to 4 places of decimals). Find $\log_8 4$ in base 8 (to 4 places of decimals).
- **2** The Fibonacci sequence f_1, f_2, f_3, \ldots is defined by $f_1 = f_2 = 1$, $f_{n+2} = f_{n+1} + f_n$. Find all n such that $f_n = n^2$.
- **3** ABC is a triangle with $\angle A = 90^{\circ}$, $\angle B = 60^{\circ}$. The points A_1 , B_1 , C_1 on BC, CA, AB respectively are such that $A_1B_1C_1$ is equilateral and the perpendiculars (to BC at A_1 , to CA at B_1 and to AB at C_1) meet at a point P inside the triangle. Find the ratios $PA_1 : PB_1 : PC_1$.
- 4 *p* is a prime. Find all relatively prime positive integers *m*, *n* such that

$$\frac{m}{n} + \frac{1}{p^2} = \frac{m+p}{n+p}$$

5 f(x) is a polynomial of degree 2n. Show that all polynomials p(x), q(x) of degree at most n such that f(x)q(x) - p(x) has the form

$$\sum_{2n < k \le 3n} (a^k + x^k)$$

have the same p(x)/q(x).

6 f(x) is a real valued function defined for $x \ge 0$ such that f(0) = 0, $f(x+1) = f(x) + \sqrt{x}$ for all x, and

$$f(x) < \frac{1}{2}f\left(x - \frac{1}{2}\right) + \frac{1}{2}f\left(x + \frac{1}{2}\right)$$
 for all $x \ge \frac{1}{2}$

Show that $f\left(\frac{1}{2}\right)$ is uniquely determined.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

© 2021 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.