AoPS Community

www.artofproblemsolving.com/community/c1974569
by parmenides51
$1 \quad \log _{8} 2=0.2525$ in base 8 (to 4 places of decimals). Find $\log _{8} 4$ in base 8 (to 4 places of decimals).

2 The Fibonacci sequence $f_{1}, f_{2}, f_{3}, \ldots$ is defined by $f_{1}=f_{2}=1, f_{n+2}=f_{n+1}+f_{n}$. Find all n such that $f_{n}=n^{2}$.
$3 A B C$ is a triangle with $\angle A=90^{\circ}, \angle B=60^{\circ}$. The points A_{1}, B_{1}, C_{1} on $B C, C A, A B$ respectively are such that $A_{1} B_{1} C_{1}$ is equilateral and the perpendiculars (to $B C$ at A_{1}, to $C A$ at B_{1} and to $A B$ at C_{1}) meet at a point P inside the triangle. Find the ratios $P A_{1}: P B_{1}: P C_{1}$.
$4 \quad p$ is a prime. Find all relatively prime positive integers m, n such that

$$
\frac{m}{n}+\frac{1}{p^{2}}=\frac{m+p}{n+p}
$$

$5 \quad f(x)$ is a polynomial of degree $2 n$. Show that all polynomials $p(x), q(x)$ of degree at most n such that $f(x) q(x)-p(x)$ has the form

$$
\sum_{2 n<k \leq 3 n}\left(a^{k}+x^{k}\right)
$$

have the same $p(x) / q(x)$.
$6 \quad f(x)$ is a real valued function defined for $x \geq 0$ such that $f(0)=0, f(x+1)=f(x)+\sqrt{x}$ for all x, and

$$
f(x)<\frac{1}{2} f\left(x-\frac{1}{2}\right)+\frac{1}{2} f\left(x+\frac{1}{2}\right) \quad \text { for all } \quad x \geq \frac{1}{2}
$$

Show that $f\left(\frac{1}{2}\right)$ is uniquely determined.

