www.artofproblemsolving.com/community/c1974570
by parmenides51

1 Let $a_{n}=2^{n-1}$ for $n>0$. Let

$$
b_{n}=\sum_{r+s \leq n} a_{r} a_{s}
$$

Find $b_{n}-b_{n-1}, b_{n}-2 b_{n-1}$ and b_{n}.
2 Show that

$$
1-\frac{1}{k} \leq n(\sqrt[n]{k}-1) \leq k-1
$$

for all positive integers n and positive reals k.
3 Let $a_{1}=1, a_{2}=2^{a_{1}}, a_{3}=3^{a_{2}}, a_{4}=4^{a_{3}}, \ldots, a_{9}=9^{a_{8}}$. Find the last two digits of a_{9}.
4 Find all polynomials $p(x)$ such that $p\left(x^{2}\right)=p(x)^{2}$ for all x. Hence find all polynomials $q(x)$ such that

$$
q\left(x^{2}-2 x\right)=q(x-2)^{2}
$$

5 Find the smallest positive real t such that

$$
\left\{\begin{array}{l}
x_{1}+x_{3}=2 t x_{2} \\
x_{2}+x_{4}=2 t x_{3} \\
x_{3}+x_{5}=2 t x_{4}
\end{array}\right.
$$

has a solution $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ in non-negative reals, not all zero.
6 For which n can we find positive integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}
$$

is a square?

