

AoPS Community

1974 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1974570 by parmenides51

1 Let $a_n = 2^{n-1}$ for n > 0. Let

$$b_n = \sum_{r+s \le n} a_r a_s$$

Find $b_n - b_{n-1}$, $b_n - 2b_{n-1}$ and b_n .

2 Show that

$$1 - \frac{1}{k} \le n\left(\sqrt[n]{k} - 1\right) \le k - 1$$

for all positive integers n and positive reals k.

- **3** Let $a_1 = 1$, $a_2 = 2^{a_1}$, $a_3 = 3^{a_2}$, $a_4 = 4^{a_3}$, ..., $a_9 = 9^{a_8}$. Find the last two digits of a_9 .
 - **4** Find all polynomials p(x) such that $p(x^2) = p(x)^2$ for all x. Hence find all polynomials q(x) such that

$$q(x^2 - 2x) = q(x - 2)^2$$

5 Find the smallest positive real *t* such that

$$\begin{cases} x_1 + x_3 = 2tx_2 \\ x_2 + x_4 = 2tx_3 \\ x_3 + x_5 = 2tx_4 \end{cases}$$

has a solution x_1 , x_2 , x_3 , x_4 , x_5 in non-negative reals, not all zero.

6 For which *n* can we find positive integers a_1, a_2, \ldots, a_n such that

$$a_1^2 + a_2^2 + \dots + a_n^2$$

is a square?

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.