AoPS Community

www.artofproblemsolving.com/community/c1974571
by parmenides51
$1 \quad A$ is the point $(1,0), L$ is the line $y=k x$ (where $k>0$). For which points $P(t, 0)$ can we find a point Q on L such that $A Q$ and $Q P$ are perpendicular?

2 Is there a positive integer n such that the fractional part of

$$
(3+\sqrt{5})^{n}>0.99 ?
$$

3 Show that

$$
a^{n}+b^{n}+c^{n} \geq a b^{n-1}+b c^{n-1}+c a^{n-1}
$$

for real $a, b, c \geq 0$ and n a positive integer.
$4 \quad P_{1}, P_{2}, P_{3}, Q_{1}, Q_{2}, Q_{3}$ are distinct points in the plane. The distances $P_{1} Q_{1}, P_{2} Q_{2}, P_{3} Q_{3}$ are equal. $P_{1} P_{2}$ and $Q_{2} Q_{1}$ are parallel (not antiparallel), similarly $P_{1} P_{3}$ and $Q_{3} Q_{1}$, and $P_{2} P_{3}$ and $Q_{3} Q_{2}$. Show that $P_{1} Q_{1}, P_{2} Q_{2}$ and $P_{3} Q_{3}$ intersect in a point.
$5 \quad$ Show that n divides $2^{n}+1$ for infinitely many positive integers n.
$6 \quad f(x)$ is defined for $0 \leq x \leq 1$ and has a continuous derivative satisfying $\left|f^{\prime}(x)\right| \leq C|f(x)|$ for some positive constant C. Show that if $f(0)=0$, then $f(x)=0$ for the entire interval.

