

AoPS Community

1977 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1974573 by parmenides51

1	p is a prime. Find the largest integer d such that p^d divides p^4 !.
2	There is a point inside an equilateral triangle side d whose distance from the vertices is $3, 4, 5$. Find d .
3	Show that the only integral solution to
	$\begin{cases} xy + yz + zx = 3n^2 - 1\\ x + y + z = 3n \end{cases}$
	with $x \ge y \ge z$ is $x = n + 1$, $y = n$, $z = n - 1$.
4	Show that if $\frac{\cos x}{\cos y} + \frac{\sin x}{\sin y} = -1$
	then $\frac{\cos^3 y}{\cos x} + \frac{\sin^3 y}{\sin x} = 1$
5	The numbers $1, 2, 3,, 64$ are written in the cells of an 8×8 board (in some order, one per cell). Show that at least four 2×2 squares have sum greater than 100 .
6	Show that there are positive reals a, b, c such that
	$\begin{cases} a^2 + b^2 + c^2 > 2\\ a^3 + b^3 + c^3 < 2\\ a^4 + b^4 + c^4 > 2 \end{cases}$

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.