AoPS Community

www.artofproblemsolving.com/community/c1974573
by parmenides51
$1 \quad p$ is a prime. Find the largest integer d such that p^{d} divides $p^{4}!$.
2 There is a point inside an equilateral triangle side d whose distance from the vertices is $3,4,5$. Find d.

3 Show that the only integral solution to

$$
\left\{\begin{array}{l}
x y+y z+z x=3 n^{2}-1 \\
x+y+z=3 n
\end{array}\right.
$$

with $x \geq y \geq z$ is $x=n+1, y=n, z=n-1$.
4 Show that if

$$
\frac{\cos x}{\cos y}+\frac{\sin x}{\sin y}=-1
$$

then

$$
\frac{\cos ^{3} y}{\cos x}+\frac{\sin ^{3} y}{\sin x}=1
$$

5 The numbers $1,2,3, \ldots, 64$ are written in the cells of an 8×8 board (in some order, one per cell). Show that at least four 2×2 squares have sum greater than 100 .

6 Show that there are positive reals a, b, c such that

$$
\left\{\begin{array}{l}
a^{2}+b^{2}+c^{2}>2 \\
a^{3}+b^{3}+c^{3}<2 \\
a^{4}+b^{4}+c^{4}>2
\end{array}\right.
$$

