AoPS Community

www.artofproblemsolving.com/community/c1974574
by parmenides51

1 Let a, b, c, d be real numbers such that $a>b>c>d \geq 0$ and $a+d=b+c$. Show that

$$
x^{a}+x^{d} \geq x^{b}+x^{c}
$$

for $x>0$.
2 Let s_{m} be the number $66 \cdots 6$ with m digits 6 . Find

$$
s_{1}+s_{2}+\cdots+s_{n}
$$

3 Two satellites are orbiting the earth in the equatorial plane at an altitude h above the surface. The distance between the satellites is always d, the diameter of the earth. For which h is there always a point on the equator at which the two satellites subtend an angle of 90° ?
$4 b_{0}, b_{1}, b_{2}, \ldots$ is a sequence of positive reals such that the sequence $b_{0}, c b_{1}, c^{2} b_{2}, c^{3} b_{3}, \ldots$ is convex for all $c>0$. (A sequence is convex if each term is at most the arithmetic mean of its two neighbors.) Show that $\ln b_{0}, \ln b_{1}, \ln b_{2}, \ldots$ is convex.
$5 \quad k>1$ is fixed. Show that for n sufficiently large for every partition of $\{1,2, \ldots, n\}$ into k disjoint subsets we can find $a \neq b$ such that a and b are in the same subset and $a+1$ and $b+1$ are in the same subset. What is the smallest n for which this is true?
$6 \quad p(x)$ is a polynomial of degree n with leading coefficient c, and $q(x)$ is a polynomial of degree m with leading coefficient c, such that

$$
p(x)^{2}=\left(x^{2}-1\right) q(x)^{2}+1
$$

Show that $p^{\prime}(x)=n q(x)$.

