AoPS Community

www.artofproblemsolving.com/community/c1975414
by parmenides51

1 Let $N=11 \cdots 122 \cdots 25$, where there are $n 1$ s and $n+12$ s. Show that N is a perfect square.
2 Does

$$
\left\{\begin{array}{l}
x^{y}=z \\
y^{z}=x \\
z^{x}=y
\end{array}\right.
$$

have any solutions in positive reals apart from $x=y=z=1$?
3 Find all polynomials $p(x)$ of degree 5 such that $p(x)+1$ is divisible by $(x-1)^{3}$ and $p(x)-1$ is divisible by $(x+1)^{3}$.
$4 \quad$ A cube side 5 is divided into 125 unit cubes. N of the small cubes are black and the rest white. Find the smallest N such that there must be a row of 5 black cubes parallel to one of the edges of the large cube.
$5 \quad A B C$ is a triangle. X, Y, Z lie on $B C, C A, A B$ respectively. Show that area $X Y Z$ cannot be smaller than each of area $A Y Z$, area $B Z X$, area $C X Y$.

6 Show that there are infinitely many triangles with side lengths a, b, c, where a is a prime, b is a power of 2 and c is the square of an odd integer.

