

AoPS Community

1981 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1975414 by parmenides51

1	Let $N = 11 \cdots 122 \cdots 25$, where there are $n \ 1s$ and $n + 1 \ 2s$. Show that N is a perfect square.
2	Does $\begin{cases} x^y=z\\y^z=x\\z^x=y \end{cases}$ have any solutions in positive reals apart from $x=y=z=1$?
3	Find all polynomials $p(x)$ of degree 5 such that $p(x) + 1$ is divisible by $(x - 1)^3$ and $p(x) - 1$ is divisible by $(x + 1)^3$.
4	A cube side 5 is divided into 125 unit cubes. N of the small cubes are black and the rest white. Find the smallest N such that there must be a row of 5 black cubes parallel to one of the edges of the large cube.
5	ABC is a triangle. X, Y, Z lie on BC , CA , AB respectively. Show that area XYZ cannot be smaller than each of area AYZ , area BZX , area CXY .
6	Show that there are infinitely many triangles with side lengths a , b , c , where a is a prime, b is a power of 2 and c is the square of an odd integer.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.