AoPS Community

www.artofproblemsolving.com/community/c1975415
by parmenides51

1 How many solutions does

$$
x^{2}-\left[x^{2}\right]=(x-[x])^{2}
$$

have satisfying $1 \leq x \leq n$?
2 Show that

$$
a b c \geq(a+b-c)(b+c-a)(c+a-b)
$$

for positive reals a, b, c.
3 Show that there is a point P inside the quadrilateral $A B C D$ such that the triangles $P A B, P B C$, $P C D, P D A$ have equal area. Show that P must lie on one of the diagonals.
$4 A B C$ is a triangle with $A B=33, A C=21$ and $B C=m$, an integer. There are points D, E on the sides $A B, A C$ respectively such that $A D=D E=E C=n$, an integer. Find m.

5 Each point in a 12×12 array is colored red, white or blue. Show that it is always possible to find 4 points of the same color forming a rectangle with sides parallel to the sides of the array.

6 Show that

$$
(2 a-1) \sin x+(1-a) \sin (1-a) x \geq 0
$$

for $0 \leq a \leq 1$ and $0 \leq x \leq \pi$.

