

AoPS Community

1982 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1975415 by parmenides51	
1	How many solutions does $x^2 - [x^2] = (x - [x])^2$
	have satisfying $1 \le x \le n$?
2	Show that $abc \ge (a+b-c)(b+c-a)(c+a-b)$
	for positive reals <i>a</i> , <i>b</i> , <i>c</i> .
3	Show that there is a point P inside the quadrilateral $ABCD$ such that the triangles PAB , PBC , PCD , PDA have equal area. Show that P must lie on one of the diagonals.
4	<i>ABC</i> is a triangle with $AB = 33$, $AC = 21$ and $BC = m$, an integer. There are points <i>D</i> , <i>E</i> on the sides <i>AB</i> , <i>AC</i> respectively such that $AD = DE = EC = n$, an integer. Find <i>m</i> .
5	Each point in a 12×12 array is colored red, white or blue. Show that it is always possible to find 4 points of the same color forming a rectangle with sides parallel to the sides of the array.
6	Show that
	$(2a - 1)\sin x + (1 - a)\sin(1 - a)x \ge 0$
	for $0 \le a \le 1$ and $0 \le x \le \pi$.

🐼 AoPS Online 🐼 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.