AoPS Community

www.artofproblemsolving.com/community/c1975417
by parmenides51

1 The positive integers are grouped as follows: $1,2+3,4+5+6,7+8+9+10, \ldots$. Find the value of the n-th sum.

2 Show that

$$
\cos x^{2}+\cos y^{2}-\cos x y<3
$$

for reals x, y.
3 The systems of equations

$$
\left\{\begin{array}{l}
2 x_{1}-x_{2}=1 \\
-x_{1}+2 x_{2}-x_{3}=1 \\
-x_{2}+2 x_{3}-x_{4}=1 \\
-x_{3}+3 x_{4}-x_{5}=1 \\
\cdots \cdots \cdots \cdots \\
-x_{n-2}+2 x_{n-1}-x_{n}=1 \\
-x_{n-1}+2 x_{n}=1
\end{array}\right.
$$

has a solution in positive integers x_{i}. Show that n must be even.
$4 \quad C, C^{\prime}$ are concentric circles with radii R, R^{\prime}. A rectangle has two adjacent vertices on C and the other two vertices on C^{\prime}. Find its sides if its area is as large as possible.

5 Show that a unit square can be covered with three equal disks with radius less than $\frac{1}{\sqrt{2}}$. What is the smallest possible radius?

6 Show that the only real solution to

$$
\left\{\begin{array}{l}
x(x+y)^{2}=9 \\
x\left(y^{3}-x^{3}\right)=7
\end{array}\right.
$$

is $x=1, y=2$.

