AoPS Community

www.artofproblemsolving.com/community/c1975443
by parmenides51

1 Let A and B be two points inside a circle C. Show that there exists a circle that contains A and B and lies completely inside C.

2 The squares in a 3×7 grid are colored either blue or yellow. Consider all $m \times n$ rectangles in this grid, where $m \in\{2,3\}, n \in\{2, \ldots, 7\}$. Prove that at least one of these rectangles has all four corner squares the same color.

3 Prove that if a, b are positive numbers, then

$$
\left(\frac{a+1}{b+1}\right)^{b+1} \geq\left(\frac{a}{b}\right)^{b}
$$

4 Find all positive integers p and q such that all the roots of the polynomial $\left(x^{2}-p x+q\right)\left(x^{2}-q x+p\right)$ are positive integers.

5 Solve in natural numbers a, b, c the system

$$
\left\{\begin{array}{l}
a^{3}-b^{3}-c^{3}=3 a b c \\
a^{2}=2(a+b+c)
\end{array}\right.
$$

6 Assume $a_{1}, a_{2}, \ldots, a_{14}$ are positive integers such that $\sum_{i=1}^{14} 3^{a_{i}}=6558$.
Prove that the numbers $a_{1}, a_{2}, \ldots, a_{14}$ consist of the numbers $1, \ldots, 7$, each taken twice.

