## AoPS Community

www.artofproblemsolving.com/community/c1975449
by parmenides51

1 Show that the polynomial $x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+\frac{3}{4}$ has no real zeroes.
2 The diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at $O$. If $S_{1}$ and $S_{2}$ are the areas of triangles $A O B$ and $C O D$ and S that of $A B C D$, show that $\sqrt{S_{1}}+\sqrt{S_{2}} \leq \sqrt{S}$. Prove that equality holds if and only if $A B$ and $C D$ are parallel.

3 Let $N \geq 3$ be a positive integer. For every pair $(a, b)$ of integers with $1 \leq a<b \leq N$ consider the quotient $q=b / a$. Show that the pairs with $q<2$ are equally numbered as those with $q>2$.

4 Prove that $x=y=z=1$ is the only positive solution of the system

$$
\left\{\begin{array}{l}
x+y^{2}+z^{3}=3 \\
y+z^{2}+x^{3}=3 \\
z+x^{2}+y^{3}=3
\end{array}\right.
$$

5 In the arrangement of $p n$ real numbers below, the difference between the greatest and smallest numbers in each row is at most $d, d>0$.


Prove that, when the numbers in each column are rearranged in decreasing order, the difference between the greatest and smallest numbers in each row will still be at most d .

6 The interval $[0,1]$ is covered by a finite number of intervals. Show that one can choose a number of these intervals which are pairwise disjoint and have the total length at least $1 / 2$.

