AoPS Community

www.artofproblemsolving.com/community/c1975451
by parmenides51

1 Let $a>b>c$ be sides of a triangle and h_{a}, h_{b}, h_{c} be the corresponding altitudes.
Prove that $a+h_{a}>b+h_{b}>c+h_{c}$.
2 Six ducklings swim on the surface of a pond, which is in the shape of a circle with radius 5 m . Show that at every moment, two of the ducklings swim on the distance of at most 5 m from each other.

3 Show that if $x_{1}+x_{2}+x_{3}=0$ for real numbers x_{1}, x_{2}, x_{3}, then $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1} \leq 0$.
Find all $n \geq 4$ for which $x_{1}+x_{2}+\ldots+x_{n}=0$ implies $x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{n-1} x_{n}+x_{n} x_{1} \leq 0$.
4 A polynomial $P(x)$ of degree 3 has three distinct real roots.
Find the number of real roots of the equation $P^{\prime}(x)^{2}-2 P(x) P^{\prime \prime}(x)=0$.
$5 \quad$ Show that there exists a constant $a>1$ such that, for any positive integers m and $n, \frac{m}{n}<\sqrt{7}$ implies that

$$
7-\frac{m^{2}}{n^{2}} \geq \frac{a}{n^{2}}
$$

6 The sequence $\left(a_{n}\right)$ is defined by $a_{1}=1$ and $a_{n+1}=\sqrt{a_{n}^{2}+\frac{1}{a_{n}}}$ for $n \geq 1$.
Prove that there exists a such that $\frac{1}{2} \leq \frac{a_{n}}{n^{a}} \leq 2$ for $n \geq 1$.

