

AoPS Community

1988 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1975451 by parmenides51

- Let a > b > c be sides of a triangle and h_a, h_b, h_c be the corresponding altitudes. Prove that a + h_a > b + h_b > c + h_c.
 Six ducklings swim on the surface of a pond, which is in the shape of a circle with radius 5 m. Show that at every moment, two of the ducklings swim on the distance of at most 5 m from
- 2 Six ducklings swim on the surface of a pond, which is in the shape of a circle with radius 5 m. Show that at every moment, two of the ducklings swim on the distance of at most 5 m from each other.
- **3** Show that if $x_1 + x_2 + x_3 = 0$ for real numbers x_1, x_2, x_3 , then $x_1x_2 + x_2x_3 + x_3x_1 \le 0$.

Find all $n \ge 4$ for which $x_1 + x_2 + \dots + x_n = 0$ implies $x_1x_2 + x_2x_3 + \dots + x_{n-1}x_n + x_nx_1 \le 0$.

- **4** A polynomial P(x) of degree 3 has three distinct real roots. Find the number of real roots of the equation $P'(x)^2 - 2P(x)P''(x) = 0$.
- 5 Show that there exists a constant a > 1 such that, for any positive integers m and n, $\frac{m}{n} < \sqrt{7}$ implies that

$$7 - \frac{m^2}{n^2} \ge \frac{a}{n^2}$$

6 The sequence (a_n) is defined by $a_1 = 1$ and $a_{n+1} = \sqrt{a_n^2 + \frac{1}{a_n}}$ for $n \ge 1$. Prove that there exists a such that $\frac{1}{2} \le \frac{a_n}{n^a} \le 2$ for $n \ge 1$.

Art of Problem Solving is an ACS WASC Accredited School.