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1 Let n be a positive integer. Prove that the numbers n2(n2 + 2)2 and n4(n2 + 2)2 are written inbase n2 + 1 with the same digits but in opposite order.
2 Find all continuous functions f such that f(x) + f(x2) = 0 for all real numbers x.
3 Find all positive integers n such that n3 − 18n2 + 115n− 391 is the cube of a positive intege
4 Let ABCD be a regular tetrahedron. Find the positions of point P on the edge BD such thatthe edge CD is tangent to the sphere with diameter AP .
5 Assume x1, x2, .., x5 are positive numbers such that x1 < x2 and x3, x4, x5 are all greater than

x2. Prove that if a > 0, then
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6 On a circle 4n points are chosen (n ≥ 1). The points are alternately colored yellow and blue. Theyellow points are divided into n pairs and the points in each pair are connected with a yellowline segment. In the same manner the blue points are divided into n pairs and the points ineach pair are connected with a blue segment. Assume that no three of the segments passthrough a single point. Show that there are at least n intersection points of blue and yellowsegments.
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