AoPS Community

www.artofproblemsolving.com/community/c1975452
by parmenides51

1 Let n be a positive integer. Prove that the numbers $n^{2}\left(n^{2}+2\right)^{2}$ and $n^{4}\left(n^{2}+2\right)^{2}$ are written in base $n^{2}+1$ with the same digits but in opposite order.

2 Find all continuous functions f such that $f(x)+f\left(x^{2}\right)=0$ for all real numbers x.
3 Find all positive integers n such that $n^{3}-18 n^{2}+115 n-391$ is the cube of a positive intege
4 Let $A B C D$ be a regular tetrahedron. Find the positions of point P on the edge $B D$ such that the edge $C D$ is tangent to the sphere with diameter $A P$.

5 Assume $x_{1}, x_{2}, . ., x_{5}$ are positive numbers such that $x_{1}<x_{2}$ and x_{3}, x_{4}, x_{5} are all greater than x_{2}. Prove that if $a>0$, then

$$
\frac{1}{\left(x_{1}+x_{3}\right)^{a}}+\frac{1}{\left(x_{2}+x_{4}\right)^{a}}+\frac{1}{\left(x_{2}+x_{5}\right)^{a}}<\frac{1}{\left(x_{1}+x_{2}\right)^{a}}+\frac{1}{\left(x_{2}+x_{3}\right)^{a}}+\frac{1}{\left(x_{4}+x_{5}\right)^{a}}
$$

$6 \quad$ On a circle $4 n$ points are chosen $(n \geq 1)$. The points are alternately colored yellow and blue. The yellow points are divided into n pairs and the points in each pair are connected with a yellow line segment. In the same manner the blue points are divided into n pairs and the points in each pair are connected with a blue segment. Assume that no three of the segments pass through a single point. Show that there are at least n intersection points of blue and yellow segments.

