AoPS Community

www.artofproblemsolving.com/community/c1977433
by parmenides51

1 How many positive integers have square less than 10^{7} ?
2 The squares of a chessboard have side 4. What is the circumference of the largest circle that can be drawn entirely on the black squares of the board?

3 What is the remainder on dividing $1234^{567}+89^{1011}$ by 12 ?
4 Given the real number k, find all differentiable real-valued functions $f(x)$ defined on the reals such that $f(x+y)=f(x)+f(y)+f(k x y)$ for all x, y.

5 A road has constant width. It is made up of finitely many straight segments joined by corners, where the inner corner is a point and the outer side is a circular arc. The direction of the straight sections is always between $N E\left(45^{\circ}\right)$ and $\operatorname{SSE}\left(1571 / 2^{\circ}\right)$. A person wishes to walk along the side of the road from point A to point B on the same side. He may only cross the street perpendicularly. What is the shortest route?
[figure missing]
$6 \quad$ The real-valued function $f(x)$ is defined on the reals. It satisfies $|f(x)| \leq A,\left|f^{\prime \prime}(x)\right| \leq B$ for some positive A, B (and all x). Show that $\left|f^{\prime}(x)\right| \leq C$, for some fixed C, which depends only on A and B. What is the smallest possible value of C ?

