www.artofproblemsolving.com/community/c1977851 by parmenides51, CheshireOrb, DNCT1

- Day 1

1 Define the sequence $\left(a_{n}\right)$ as $a_{1}=1, a_{2 n}=a_{n}$ and $a_{2 n+1}=a_{n}+1$ for all $n \geq 1$.
a) Find all positive integers n such that $a_{k n}=a_{n}$ for all integers $1 \leq k \leq n$.
b) Prove that there exist infinitely many positive integers m such that $a_{k m} \geq a_{m}$ for all positive integers k.

2 In a board of 2021×2021 grids, we pick k unit squares such that every picked square shares vertice(s) with at most 1 other picked square. Determine the maximum of k.
$3 \quad$ Let $A B C$ be a triangle and N be a point that differs from A, B, C. Let A_{b} be the reflection of A through $N B$, and B_{a} be the reflection of B through $N A$. Similarly, we define $B_{c}, C_{b}, A_{c}, C_{a}$. Let m_{a} be the line through N and perpendicular to $B_{c} C_{b}$. Define similarly m_{b}, m_{c}.
a) Assume that N is the orthocenter of $\triangle A B C$, show that the respective reflection of m_{a}, m_{b}, m_{c} through the bisector of angles $\angle B N C, \angle C N A, \angle A N B$ are the same line.
b) Assume that N is the nine-point center of $\triangle A B C$, show that the respective reflection of m_{a}, m_{b}, m_{c} through $B C, C A, A B$ concur.

- Day 2

4 Let a, b, c are non-negative numbers such that

$$
2\left(a^{2}+b^{2}+c^{2}\right)+3(a b+b c+c a)=5(a+b+c)
$$

then prove that $4\left(a^{2}+b^{2}+c^{2}\right)+2(a b+b c+c a)+7 a b c \leq 25$
5 Given a fixed circle (O) and two fixed points B, C on that circle, let A be a moving point on (O) such that $\triangle A B C$ is acute and scalene. Let I be the midpoint of $B C$ and let $A D, B E, C F$ be the three heights of $\triangle A B C$. In two rays $\overrightarrow{F A}, \overrightarrow{E A}$, we pick respectively M, N such that $F M=C E, E N=B F$. Let L be the intersection of $M N$ and $E F$, and let $G \neq L$ be the second intersection of (LEN) and (LFM).
a) Show that the circle $(M N G)$ always goes through a fixed point.
b) Let $A D$ intersects (O) at $K \neq A$. In the tangent line through D of $(D K I)$, we pick P, Q such that $G P\|A B, G Q\| A C$. Let T be the center of $(G P Q)$. Show that $G T$ always goes through a fixed point.
$6 \quad$ Let $n \geq 3$ be a positive integers and p be a prime number such that $p>6^{n-1}-2^{n}+1$. Let S be the set of n positive integers with different residues modulo p. Show that there exists a positive integer c such that there are exactly two ordered triples $(x, y, z) \in S^{3}$ with distinct elements, such that $x-y+z-c$ is divisible by p.

