AoPS Community

www.artofproblemsolving.com/community/c1978726
by parmenides51
$1 \quad$ An integer x has the property that the sums of the digits of x and of $3 x$ are the same. Prove that x is divisible by 9 .

2 A railway line is divided into ten sections by the stations $A, B, C, D, E, F, G, H, I, J, K$. The length of each section is an integer number of kilometers and the distacne between A and K is 56 km . A trip along two successive sections never exceeds 12 km , but a trip along three successive sections is at least 17 km . What is the distance between B and G ? https://cdn.artofproblemsolving.com/attachments/1/f/202ddf633ed6da8692bf4d0b1fc0af595485? png

3 Assume that a and b are integers. Prove that the equation $a^{2}+b^{2}+x^{2}=y^{2}$ has an integer solution x, y if and only if the product $a b$ is even.

4 To each pair of nonzero real numbers a and b a real number $a * b$ is assigned so that $a *(b * c)=$ $(a * b) c$ and $a * a=1$ for all a, b, c. Solve the equation $x * 36=216$.

5 A triangle with sides a, b, c and perimeter $2 p$ is given. Is possible, a new triangle with sides $p-a$, $p-b, p-c$ is formed. The process is then repeated with the new triangle. For which original triangles can this process be repeated indefinitely?
$6 \quad$ For real numbers a and b define $f(x)=\frac{1}{a x+b}$. For which a and b are there three distinct real numbers x_{1}, x_{2}, x_{3} such that $f\left(x_{1}\right)=x_{2}, f\left(x_{2}\right)=x_{3}$ and $f\left(x_{3}\right)=x_{1}$?

