AoPS Community

www.artofproblemsolving.com/community/c1978733
by parmenides51

1 Let $A C$ be a diameter of a circle and $A B$ be tangent to the circle. The segment $B C$ intersects the circle again at D. Show that if $A C=1, A B=a$, and $C D=b$, then

$$
\frac{1}{a^{2}+\frac{1}{2}}<\frac{b}{a}<\frac{1}{a^{2}}
$$

2 Let D be the point on side $A C$ of a triangle $A B C$ such that $B D$ bisects $\angle B$, and E be the point on side $A B$ such that $3 \angle A C E=2 \angle B C E$. Suppose that $B D$ and $C E$ intersect at a point P with $E D=D C=C P$. Determine the angles of the triangle.

3 Let A and B be integers with an odd sum. Show that every integer can be written in the form $x^{2}-y^{2}+A x+B y$, where x, y are integers.

4 Players A and B play the following game. Each of them throws a dice, and if the outcomes are x and y respectively, a list of all two digit numbers $10 a+b$ with $a, b \in\{1, . ., 6\}$ and $10 a+b \leq 10 x+y$ is created. Then the players alternately reduce the list by replacing a pair of numbers in the list by their absolute difference, until only one number remains. If the remaining number is of the same parity as the outcome of A s throw, then A is proclaimed the winner. What is the probability that A wins the game?

5 Let $s(m)$ denote the sum of (decimal) digits of a positive integer m. Prove that for every integer $n>1$ not equal to 10 there is a unique integer $f(n) \geq 2$ such that $s(k)+s(f(n)-k)=n$ for all integers k with $0<k<f(n)$.

6 Assume that a set M of real numbers is the union of finitely many disjoint intervals with the total length greater than 1 . Prove that M contains a pair of distinct numbers whose difference is an integer.

