AoPS Community

www.artofproblemsolving.com/community/c1978748
by parmenides51
$1 \quad x \sqrt{8}+\frac{1}{x \sqrt{8}}=\sqrt{8}$ has two real solutions x_{1}, x_{2}. The decimal expansion of x_{1} has the digit 6 in place 1994. What digit does x_{2} have in place 1994?

2 In the triangle $A B C$, the medians from B and C are perpendicular. Show that $\cot B+\cot C \geq \frac{2}{3}$.
$3 \quad$ The vertex B of the triangle $A B C$ lies in the plane P. The plane of the triangle meets the plane in a line L. The angle between L and $A B$ is a, and the angle between L and $B C$ is b. The angle between the two planes is c. Angle $A B C$ is 90°. Show that $\sin ^{2} c=\sin ^{2} a+\sin ^{2} b$. https://cdn.artofproblemsolving.com/attachments/9/e/c0608e5408fd27a5f907a3488cce7dc2af69! png
$4 \quad$ Find all integers m, n such that $2 n^{3}-m^{3}=m n^{2}+11$.
5 The polynomial $x^{k}+a_{1} x^{k-1}+a_{2} x^{k-2}+\ldots+a_{k}$ has k distinct real roots. Show that $a_{1}^{2}>\frac{2 k a_{2}}{k-1}$.
$6 \quad$ Let N be the set of non-negative integers. The function $f: N \rightarrow N$ satisfies $f(a+b)=$ $f(f(a)+b)$ for all a, b and $f(a+b)=f(a)+f(b)$ for $a+b<10$. Also $f(10)=1$. How many three digit numbers n satisfy $f(n)=f(N)$, where N is the "tower" $2,3,4,5$, in other words, it is 2^{a}, where $a=3^{b}$, where $b=4^{5}$?

