AoPS Community

www.artofproblemsolving.com/community/c1978758
by parmenides51

1 Find all positive integers a, b, c, such that $(8 a-5 b)^{2}+(3 b-2 c)^{2}+(3 c-7 a)^{2}=2$.
$2 \quad A B C$ is a triangle. Show that $c \geq(a+b) \sin \frac{C}{2}$
3 A cube side 5 is made up of unit cubes. Two small cubes are adjacent if they have a common face. Can we start at a cube adjacent to a corner cube and move through all the cubes just once? (The path must always move from a cube to an adjacent cube).
$4 A B C D$ is a quadrilateral with $\angle A=900, A D=a, B C=b, A B=h$, and area $\frac{(a+b) h}{2}$. What can we say about $\angle B$?

5 Show that for any $n>5$ we can find positive integers $x_{1}, x_{2}, \ldots, x_{n}$ such that $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}=$ $\frac{1997}{1998}$. Show that in any such equation there must be two of the n numbers with a common divisor (>1).
$6 \quad$ Show that for some $c>0$, we have $\left|\sqrt[3]{2}-\frac{m}{n}\right|>\frac{c}{n^{3}}$ for all integers m, n with $n \geq 1$.

