

AoPS Community

1999 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1978775 by parmenides51

1	Solve $ x^2 - x - 1 - 2 - 3 - 4 - 5 = x^2 + x - 30.$
2	Circle C center O touches externally circle C' center O'. A line touches C at A and C' at B. P is the midpoint of AB. Show that $\angle OPO' = 90^{\circ}$.
3	Find non-negative integers a, b, c, d such that $5^a + 6^b + 7^c + 11^d = 1999$.
4	An equilateral triangle of side x has its vertices on the sides of a square side 1. What are the possible values of x ?
5	x_i are non-negative reals. $x_1 + x_2 + + x_n = s$. Show that $x_1x_2 + x_2x_3 + + x_{n-1}x_n \le \frac{s^2}{4}$.
6	S is any sequence of at least 3 positive integers. A move is to take any a, b in the sequence such that neither divides the other and replace them by gcd (a, b) and lcm (a, b) . Show that only finitely many moves are possible and that the final result is independent of the moves made, except possibly for order.

AoPS Online 🔯 AoPS Academy 🔯 AoPS & CADEMY