AoPS Community

www.artofproblemsolving.com/community/c1978775
by parmenides51

1 Solve $\left|\left|\left|\left|\left|x^{2}-x-1\right|-2\right|-3\right|-4\right|-5\right|=x^{2}+x-30$.
2 Circle C center O touches externally circle C^{\prime} center O^{\prime}. A line touches C at A and C^{\prime} at $B . P$ is the midpoint of $A B$. Show that $\angle O P O^{\prime}=90^{\circ}$.

3 Find non-negative integers a, b, c, d such that $5^{a}+6^{b}+7^{c}+11^{d}=1999$.
4 An equilateral triangle of side x has its vertices on the sides of a square side 1 . What are the possible values of x ?
$5 \quad x_{i}$ are non-negative reals. $x_{1}+x_{2}+\ldots+x_{n}=s$. Show that $x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{n-1} x_{n} \leq \frac{s^{2}}{4}$.
$6 \quad S$ is any sequence of at least 3 positive integers. A move is to take any a, b in the sequence such that neither divides the other and replace them by gcd (a, b) and Icm (a, b). Show that only finitely many moves are possible and that the final result is independent of the moves made, except possibly for order.

