AoPS Community

www.artofproblemsolving.com/community/c1978784
by parmenides51

1 Let $d_{1}, d_{2}, \ldots, d_{k}$ be the positive divisors of $n=1990$!. Show that $\sum \frac{d_{i}}{\sqrt{n}}=\sum \frac{\sqrt{n}}{d_{i}}$.
2 The points $A_{1}, A_{2}, . ., A_{2 n}$ are equally spaced in that order along a straight line with $A_{1} A_{2}=k$. P is chosen to minimise $\sum P A_{i}$. Find the minimum.
$3 \quad$ Find all a, b such that $\sin x+\sin a \geq b \cos x$ for all x.
$4 \quad A B C D$ is a quadrilateral. The bisectors of $\angle A$ and $\angle B$ meet at E. The line through E parallel to $C D$ meets $A D$ at L and $B C$ at M. Show that $L M=A L+B M$.

5 Find all monotonic positive functions $f(x)$ defined on the positive reals such that $f(x y) f\left(\frac{f(y)}{x}\right)=$ 1 for all x, y.
$6 \quad$ Find all positive integers m, n such that $\frac{117}{158}>\frac{m}{n}>\frac{97}{131}$ and $n \leq 500$.

