

AoPS Community

1990 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1978784 by parmenides51

1	Let $d_1, d_2,, d_k$ be the positive divisors of $n = 1990!$. Show that $\sum \frac{d_i}{\sqrt{n}} = \sum \frac{\sqrt{n}}{d_i}$.
2	The points $A_1, A_2,, A_{2n}$ are equally spaced in that order along a straight line with $A_1A_2 = k$. P is chosen to minimise $\sum PA_i$. Find the minimum.
3	Find all a, b such that $\sin x + \sin a \ge b \cos x$ for all x .
4	$ABCD$ is a quadrilateral. The bisectors of $\angle A$ and $\angle B$ meet at E . The line through E parallel to CD meets AD at L and BC at M . Show that $LM = AL + BM$.
5	Find all monotonic positive functions $f(x)$ defined on the positive reals such that $f(xy)f\left(\frac{f(y)}{x}\right) = 1$ for all x, y .
6	Find all positive integers m, n such that $\frac{117}{158} > \frac{m}{n} > \frac{97}{131}$ and $n \le 500$.

AoPS Online AoPS Academy AoPS Catery