AoPS Community

www.artofproblemsolving.com/community/c1978786
by parmenides51

1 Find all positive integers m, n such that $\frac{1}{m}+\frac{1}{n}-\frac{1}{m n}=\frac{2}{5}$.
$2 x, y$ are positive reals such that $x-\sqrt{x} \leq y-1 / 4 \leq x+\sqrt{x}$. Show that $y-\sqrt{y} \leq x-1 / 4 \leq y+\sqrt{y}$.

3 The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined by $x_{0}=0, x_{k+1}=\left[\left(n-\sum_{0}^{k} x_{i}\right) / 2\right]$. Show that $x_{k}=0$ for all sufficiently large k and that the sum of the non-zero terms x_{k} is $n-1$.
$4 x_{1}, x_{2}, \ldots, x_{8}$ is a permutation of $1,2, \ldots, 8$. A move is to take x_{3} or x_{8} and place it at the start to from a new sequence. Show that by a sequence of moves we can always arrive at $1,2, \ldots, 8$.

5 Show that there are infinitely many odd positive integers n such that in binary n has more 1s than n^{2}.

6 Given any triangle, show that we can always pick a point on each side so that the three points form an equilateral triangle with area at most one quarter of the original triangle.

