Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c1981117
by jasperE3

- $\quad 1$ st Grade

Problem 1 None of the positive integers k, m, n are divisible by 5 . Prove that at least one of the numbers $k^{2}-m^{2}, m^{2}-n^{2}, n^{2}-k^{2}$ is divisible by 5 .

Problem 2 Tina wrote a positive number on each of five pieces of paper. She did not say which numbers she wrote, but revealed their pairwise sums instead: $17,20,28,14,42,36,28,39,25,31$. Which numbers did she write?

Problem 3 For an arbitrary point P on a given segment $A B$, two isosceles right triangles $A P Q$ and $P B R$ with the right angles at Q and R are constructed on the same side of the line $A B$. Prove that the distance from the midpoint M of $Q R$ to the line $A B$ does not depend on the choice of P.

Problem 4 Andrej and Barbara play the following game with two strips of newspaper of length a and b. They alternately cut from any end of any of the strips a piece of length d. The player who cannot cut such a piece loses the game. Andrej allows Barbara to start the game. Find out how the lengths of the strips determine the winner.

- \quad 2nd Grade

Problem 1 Determine all positive integers a, b, c such that $a b+a c+b c$ is a prime number and

$$
\frac{a+b}{a+c}=\frac{b+c}{b+a}
$$

Problem 2 Let $p(n)$ denote the product of decimal digits of a positive integer n. Computer the sum $p(1)+p(2)+\ldots+p(2001)$.

Problem 3 Let E and F be points on the side $A B$ of a rectangle $A B C D$ such that $A E=E F$. The line through E perpendicular to $A B$ intersects the diagonal $A C$ at G, and the segments $F D$ and $B G$ intersect at H. Prove that the areas of the triangles $F B H$ and $G H D$ are equal.

Problem 4 Find the smallest number of squares on an 8×8 board that should be colored so that every L-tromino on the board contains at least one colored square.

- $\quad 3 r d$ Grade

AoPS Community

Problem 1 (a) Prove that $\sqrt{n+1}-\sqrt{n}<\frac{1}{2 \sqrt{n}}<\sqrt{n}-\sqrt{n-1}$ for all $n \in \mathbb{N}$.
(b) Prove that the integer part of the sum $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{m^{2}}}$, where $m \in \mathbb{N}$, is either $2 m-2$ or $2 m-1$.

Problem 2 Find all rational numbers r such that the equation $r x^{2}+(r+1) x+r=1$ has integer solutions.

Problem 3 A point D is taken on the side $B C$ of an acute-angled triangle $A B C$ such that $A B=A D$. Point E on the altitude from C of the triangle is such that the circle k_{1} with center E is tangent to the line $A D$ at D. Let k_{2} be the circle through C that is tangent to $A B$ at B. Prove that A lies on the line determined by the common chord of k_{1} and k_{2}.

Problem 4 Cross-shaped tiles are to be placed on a 8×8 square grid without overlapping. Find the largest possible number of tiles that can be placed. https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvMy8zL2EyY2Q4MDcy =
\&rn=U2NyZWVuIFNob3QgMjAyMS0wNCOwNyBhdCA2LjIzLjU4IEFNLnBuZw

- 4th Grade

Problem 1 Let a, b, c, d, e, f be positive numbers such that a, b, c, d is an arithmetic progression, and a, e, f, d is a geometric progression. Prove that $b c \geq e f$.

Problem 2 Find all prime numbers p for which $3^{p}-(p+2)^{2}$ is also prime.
Problem 3 Let D be the foot of the altitude from A in a triangle $A B C$. The angle bisector at C intersects $A B$ at a point E. Given that $\angle C E A=\frac{\pi}{4}$, compute $\angle E D B$.

Problem 4 Let $n \geq 4$ points on a circle be denoted by 1 through n. A pair of two nonadjacent points denoted by a and b is called regular if all numbers on one of the arcs determined by a and b are less than a and b. Prove that there are exactly $n-3$ regular pairs.

