

AoPS Community

2016 USA Team Selection Test

USA Team Selection Test 2016

www.artofproblemsolving.com/community/c198174 by v_Enhance

December 10th, 2015

1 Let $S = \{1, ..., n\}$. Given a bijection $f : S \to S$ an *orbit* of f is a set of the form $\{x, f(x), f(f(x)), ...\}$ for some $x \in S$. We denote by c(f) the number of distinct orbits of f. For example, if n = 3 and f(1) = 2, f(2) = 1, f(3) = 3, the two orbits are $\{1, 2\}$ and $\{3\}$, hence c(f) = 2.

Given k bijections f_1, \ldots, f_k from S to itself, prove that

$$c(f_1) + \dots + c(f_k) \le n(k-1) + c(f)$$

where $f: S \to S$ is the composed function $f_1 \circ \cdots \circ f_k$.

Proposed by Maria Monks Gillespie

2 Let *ABC* be a scalene triangle with circumcircle Ω , and suppose the incircle of *ABC* touches *BC* at *D*. The angle bisector of $\angle A$ meets *BC* and Ω at *E* and *F*. The circumcircle of $\triangle DEF$ intersects the *A*-excircle at *S*₁, *S*₂, and Ω at *T* \neq *F*. Prove that line *AT* passes through either *S*₁ or *S*₂.

Proposed by Evan Chen

3 Let p be a prime number. Let \mathbb{F}_p denote the integers modulo p, and let $\mathbb{F}_p[x]$ be the set of polynomials with coefficients in \mathbb{F}_p . Define $\Psi : \mathbb{F}_p[x] \to \mathbb{F}_p[x]$ by

$$\Psi\left(\sum_{i=0}^{n} a_i x^i\right) = \sum_{i=0}^{n} a_i x^{p^i}.$$

Prove that for nonzero polynomials $F, G \in \mathbb{F}_p[x]$,

$$\Psi(\gcd(F,G)) = \gcd(\Psi(F), \Psi(G)).$$

Here, a polynomial Q divides P if there exists $R \in \mathbb{F}_p[x]$ such that P(x)-Q(x)R(x) is the polynomial with all coefficients 0 (with all addition and multiplication in the coefficients taken modulo p), and the gcd of two polynomials is the highest degree polynomial with leading coefficient 1 which divides both of them. A non-zero polynomial is a polynomial with not all coefficients 0. As an example of multiplication, $(x + 1)(x + 2)(x + 3) = x^3 + x^2 + x + 1$ in $\mathbb{F}_5[x]$.

Proposed by Mark Sellke

Jan January 21st, 2016

AoPS Community

- **1** Let $\sqrt{3} = 1.b_1b_2b_3..._{(2)}$ be the binary representation of $\sqrt{3}$. Prove that for any positive integer n, at least one of the digits $b_n, b_{n+1}, ..., b_{2n}$ equals 1.
- **2** Let $n \ge 4$ be an integer. Find all functions $W : \{1, ..., n\}^2 \to \mathbb{R}$ such that for every partition $[n] = A \cup B \cup C$ into disjoint sets,

$$\sum_{a \in A} \sum_{b \in B} \sum_{c \in C} W(a, b) W(b, c) = |A| |B| |C|.$$

3 Let *ABC* be an acute scalene triangle and let *P* be a point in its interior. Let A_1 , B_1 , C_1 be projections of *P* onto triangle sides *BC*, *CA*, *AB*, respectively. Find the locus of points *P* such that AA_1 , BB_1 , CC_1 are concurrent and $\angle PAB + \angle PBC + \angle PCA = 90^\circ$.

Act of Problem Solving is an ACS WASC Accredited School.