AoPS Community

USA Team Selection Test 2016

www.artofproblemsolving.com/community/c198174
by v_Enhance

Dec December 10th, 2015

1 Let $S=\{1, \ldots, n\}$. Given a bijection $f: S \rightarrow S$ an orbit of f is a set of the form $\{x, f(x), f(f(x)), \ldots\}$ for some $x \in S$. We denote by $c(f)$ the number of distinct orbits of f. For example, if $n=3$ and $f(1)=2, f(2)=1, f(3)=3$, the two orbits are $\{1,2\}$ and $\{3\}$, hence $c(f)=2$.

Given k bijections f_{1}, \ldots, f_{k} from S to itself, prove that

$$
c\left(f_{1}\right)+\cdots+c\left(f_{k}\right) \leq n(k-1)+c(f)
$$

where $f: S \rightarrow S$ is the composed function $f_{1} \circ \cdots \circ f_{k}$.
Proposed by Maria Monks Gillespie
2 Let $A B C$ be a scalene triangle with circumcircle Ω, and suppose the incircle of $A B C$ touches $B C$ at D. The angle bisector of $\angle A$ meets $B C$ and Ω at E and F. The circumcircle of $\triangle D E F$ intersects the A-excircle at S_{1}, S_{2}, and Ω at $T \neq F$. Prove that line $A T$ passes through either S_{1} or S_{2}.

Proposed by Evan Chen
3 Let p be a prime number. Let \mathbb{F}_{p} denote the integers modulo p, and let $\mathbb{F}_{p}[x]$ be the set of polynomials with coefficients in \mathbb{F}_{p}. Define $\Psi: \mathbb{F}_{p}[x] \rightarrow \mathbb{F}_{p}[x]$ by

$$
\Psi\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} a_{i} x^{p^{i}} .
$$

Prove that for nonzero polynomials $F, G \in \mathbb{F}_{p}[x]$,

$$
\Psi(\operatorname{gcd}(F, G))=\operatorname{gcd}(\Psi(F), \Psi(G))
$$

Here, a polynomial Q divides P if there exists $R \in \mathbb{F}_{p}[x]$ such that $P(x)-Q(x) R(x)$ is the polynomial with all coefficients 0 (with all addition and multiplication in the coefficients taken modulo p), and the gcd of two polynomials is the highest degree polynomial with leading coefficient 1 which divides both of them. A non-zero polynomial is a polynomial with not all coefficients 0 . As an example of multiplication, $(x+1)(x+2)(x+3)=x^{3}+x^{2}+x+1$ in $\mathbb{F}_{5}[x]$.

Proposed by Mark Sellke
Jan January 21st, 2016

1 Let $\sqrt{3}=1 . b_{1} b_{2} b_{3} \cdots$ (2) be the binary representation of $\sqrt{3}$. Prove that for any positive integer n, at least one of the digits $b_{n}, b_{n+1}, \ldots, b_{2 n}$ equals 1 .

2 Let $n \geq 4$ be an integer. Find all functions $W:\{1, \ldots, n\}^{2} \rightarrow \mathbb{R}$ such that for every partition $[n]=A \cup B \cup C$ into disjoint sets,

$$
\sum_{a \in A} \sum_{b \in B} \sum_{c \in C} W(a, b) W(b, c)=|A||B \| C| .
$$

3 Let $A B C$ be an acute scalene triangle and let P be a point in its interior. Let A_{1}, B_{1}, C_{1} be projections of P onto triangle sides $B C, C A, A B$, respectively. Find the locus of points P such that $A A_{1}, B B_{1}, C C_{1}$ are concurrent and $\angle P A B+\angle P B C+\angle P C A=90^{\circ}$.

