AoPS Community

www.artofproblemsolving.com/community/c1982507
by jasperE3, giancarlo

- $\quad 1$ st Grade

Problem 1 Show that a triangle whose side lengths are prime numbers cannot have integer area.
Problem 2 The product of the positive real numbers x, y, z is 1 . Show that if

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq x+y+z
$$

then

$$
\frac{1}{x^{k}}+\frac{1}{y^{k}}+\frac{1}{z^{k}} \geq x^{k}+y^{k}+z^{k}
$$

for all positive integers k.
Problem 3 In an isosceles triangle with base a, lateral side b, and height to the base v, it holds that $\frac{a}{2}+v \geq b \sqrt{2}$. Find the angles of the triangle. Compute its area if $b=8 \sqrt{2}$.

Problem 4 How many divisors of 30^{2003} are there which do not divide 20^{2000} ?

- \quad 2nd Grade

Problem 1 Find all pairs of real numbers (x, y) satisfying

$$
(2 x+1)^{2}+y^{2}+(y-2 x)^{2}=\frac{1}{3} .
$$

Problem 2 Let M be a point inside square $A B C D$ and $A_{1}, B_{1}, C_{1}, D_{1}$ be the second intersection points of $A M, B M, C M, D M$ with the circumcircle of the square. Prove that $A_{1} B_{1} \cdot C_{1} D_{1}=A_{1} D_{1}$. $B_{1} C_{1}$.

Problem 3 For positive numbers $a_{1}, a_{2}, \ldots, a_{n}(n \geq 2)$ denote $s=a_{1}+\ldots+a_{n}$. Prove that

$$
\frac{a_{1}}{s-a_{1}}+\ldots+\frac{a_{n}}{s-a_{n}} \geq \frac{n}{n-1} .
$$

Problem 4 Find the least possible cardinality of a set A of natural numbers, the smallest and greatest of which are 1 and 100 , and having the property that every element of A except for 1 equals the sum of two elements of A.

AoPS Community

- \quad 3rd Grade

Problem 1 Let a, b, c be the sides of triangle $A B C$ and let α, β, γ be the corresponding angles.
(a) If $\alpha=3 \beta$, prove that $\left(a^{2}-b^{2}\right)(a-b)=b c^{2}$.
(b) Is the converse true?

Problem 2 For every integer $n>2$, prove the equality

$$
\left\lfloor\frac{n(n+1)}{4 n-2}\right\rfloor=\left\lfloor\frac{n+1}{4}\right\rfloor .
$$

Problem 3 In a tetrahedron $A B C D$, all angles at vertex D are equal to α and all dihedral angles between faces having D as a vertex are equal to ϕ. Prove that there exists a unique α for which $\phi=2 \alpha$.

Problem 4 Given 8 unit cubes, 24 of their faces are painted in blue and the remaining 24 faces in red. Show that it is always possible to assemble these cubes into a cube of edge 2 on whose surface there are equally many blue and red unit squares.

- \quad 4th Grade

Problem 1 Let I be a point on the bisector of angle $B A C$ of a triangle $A B C$. Points M, N are taken on the respective sides $A B$ and $A C$ so that $\angle A B I=\angle N I C$ and $\angle A C I=\angle M I B$. Show that I is the incenter of triangle $A B C$ if and only if points M, N and I are collinear.

Problem 2 A sequence $\left(a_{n}\right)_{n \geq 0}$ satisfies $a_{m+n}+a_{m-n}=\frac{1}{2}\left(a_{2 m}+a_{2 n}\right)$ for all integers m, n with $m \geq$ $n \geq 0$. Given that $a_{1}=1$, find a_{2003}.

Problem 3 The natural numbers 1 through 2003 are arranged in a sequence. We repeatedly perform the following operation: If the first number in the sequence is k, the order of the first k terms is reversed. Prove that after several operations number 1 will occur on the first place.

Problem 4 Prove that the number $\binom{n}{p}-\left\lfloor\frac{n}{p}\right\rfloor$ is divisible by p for every prime number and integer $n \geq p$.

