EGMO 2021
www.artofproblemsolving.com/community/c1984438
by Tintarn, anser

- Day 1

1 The number 2021 is fantabulous. For any positive integer m, if any element of the set $\{m, 2 m+$ $1,3 m\}$ is fantabulous, then all the elements are fantabulous. Does it follow that the number 2021^{2021} is fantabulous?

2 Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that the equation

$$
f(x f(x)+y)=f(y)+x^{2}
$$

holds for all rational numbers x and y.
Here, \mathbb{Q} denotes the set of rational numbers.
3 Let $A B C$ be a triangle with an obtuse angle at A. Let E and F be the intersections of the external bisector of angle A with the altitudes of $A B C$ through B and C respectively. Let M and N be the points on the segments $E C$ and $F B$ respectively such that $\angle E M A=\angle B C A$ and $\angle A N F=\angle A B C$. Prove that the points E, F, N, M lie on a circle.

- Day 2

$4 \quad$ Let $A B C$ be a triangle with incenter I and let D be an arbitrary point on the side $B C$. Let the line through D perpendicular to $B I$ intersect $C I$ at E. Let the line through D perpendicular to $C I$ intersect $B I$ at F. Prove that the reflection of A across the line $E F$ lies on the line $B C$.
$5 \quad$ A plane has a special point O called the origin. Let P be a set of 2021 points in the plane such that

- no three points in P lie on a line and
- no two points in P lie on a line through the origin.

A triangle with vertices in P is fat if O is strictly inside the triangle. Find the maximum number of fat triangles.

6 Does there exist a nonnegative integer a for which the equation

$$
\left\lfloor\frac{m}{1}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{m}{3}\right\rfloor+\cdots+\left\lfloor\frac{m}{m}\right\rfloor=n^{2}+a
$$

has more than one million different solutions (m, n) where m and n are positive integers?
[i]The expression $\lfloor x\rfloor$ denotes the integer part (or floor) of the real number x. Thus $\lfloor\sqrt{2}\rfloor=$ $1,\lfloor\pi\rfloor=\lfloor 22 / 7\rfloor=3,\lfloor 42\rfloor=42$, and $\lfloor 0\rfloor=0$. [/i]

