

AoPS Community

2021 EGMO

EGMO 2021

www.artofproblemsolving.com/community/c1984438 by Tintarn, anser

-	Day 1
1	The number 2021 is fantabulous. For any positive integer m , if any element of the set $\{m, 2m + 1, 3m\}$ is fantabulous, then all the elements are fantabulous. Does it follow that the number 2021^{2021} is fantabulous?
2	Find all functions $f : \mathbb{Q} \to \mathbb{Q}$ such that the equation
	$f(xf(x) + y) = f(y) + x^2$
	holds for all rational numbers x and y .
	Here, ${\mathbb Q}$ denotes the set of rational numbers.
3	Let <i>ABC</i> be a triangle with an obtuse angle at <i>A</i> . Let <i>E</i> and <i>F</i> be the intersections of the external bisector of angle <i>A</i> with the altitudes of <i>ABC</i> through <i>B</i> and <i>C</i> respectively. Let <i>M</i> and <i>N</i> be the points on the segments <i>EC</i> and <i>FB</i> respectively such that $\angle EMA = \angle BCA$ and $\angle ANF = \angle ABC$. Prove that the points <i>E</i> , <i>F</i> , <i>N</i> , <i>M</i> lie on a circle.
-	Day 2
4	Let ABC be a triangle with incenter I and let D be an arbitrary point on the side BC . Let the line through D perpendicular to BI intersect CI at E . Let the line through D perpendicular to CI intersect BI at F . Prove that the reflection of A across the line EF lies on the line BC .
5	A plane has a special point O called the origin. Let P be a set of 2021 points in the plane such that
	- no three points in P lie on a line and - no two points in P lie on a line through the origin.
	A triangle with vertices in P is fat if O is strictly inside the triangle. Find the maximum number of fat triangles.
6	Does there exist a nonnegative integer a for which the equation
	$\left\lfloor \frac{m}{1} \right\rfloor + \left\lfloor \frac{m}{2} \right\rfloor + \left\lfloor \frac{m}{3} \right\rfloor + \dots + \left\lfloor \frac{m}{m} \right\rfloor = n^2 + a$

has more than one million different solutions (m, n) where m and n are positive integers?

AoPS Community

2021 EGMO

[i]The expression $\lfloor x \rfloor$ denotes the integer part (or floor) of the real number x. Thus $\lfloor \sqrt{2} \rfloor = 1, \lfloor \pi \rfloor = \lfloor 22/7 \rfloor = 3, \lfloor 42 \rfloor = 42$, and $\lfloor 0 \rfloor = 0.$ [/i]

Act of Problem Solving is an ACS WASC Accredited School.